Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 78 Nr 1 (2023)

Artykuły

Perspektywy stosowania pestycydów w rolnictwie

DOI: https://doi.org/10.24326/as.2023.5078
Przesłane: 14 lutego 2023
Opublikowane: 09-06-2023

Abstrakt

Concerns about food safety issues have put considerable pressure on pesticide producers in Europe and worldwide to reduce the levels of pesticide residues in food. The aim of this work is to assess the use of traditional pesticides and their effects, to present perspectives in this field and to identify regulatory needs for their use and implementation. The work is based on a systematic review in which the research problem was defined, primary sources were selected and critically appraised, data were collected, analysed and evaluated, and conclusions were formulated. The state of the pesticide market and the current legal requirements for risk assessment in relation to exposure to chemical substances were reviewed. Food safety issues are presented through the prism of pesticide residues in food. Their widespread use and considerable persistence have made them ubiquitous in the natural environment and their residues pose a threat to the environment and to human and animal health. It has been shown that the most important factor influencing the search for new tools to control diseases and pests of crops is the progressive development of resistance of these populations to currently used pesticides. Various alternatives to the phasing out of synthetic pesticides in the form of natural products are therefore being developed to support the development of the natural products market.

Bibliografia

  1. Bioherbicides Market – global industry analysis and forecast (2022–2029), 2022. https://www.maximizemarketresearch.com/market-report/global-bioherbicides-market/68389/
  2. Arnason J.T., Sims S.R., Scott I.M., 2012. Natural products from plants as insecticides. Encyclope-dia of Life Support Systems (EOLSS), 1–8.
  3. Bailey K.L., Pitt W.M., Falk S., Derby J., 2011. The effects of Phoma macrostoma on nontarget plant and target weed species. Biol. Control 58(3), 379–386. DOI: https://doi.org/10.1016/j.biocontrol.2011.06.001
  4. Bannon J.S., 1988. CASSTTM herbicide (Alternaria cassiae): a case history of a mycoherbicide. Am. J. Alt. Agri. 3, 73–76. DOI: https://doi.org/10.1017/S0889189300002216
  5. Barr D.B., Bravo R., Weerasekera G., Caltabiano L.M., Whitehead R.D., Olsson A.O., Caudill S.P., Schober S.E., Pirkle J.L. Sampson E.J., 2004. Concentrations of dialkyl phosphate me-tabolites of organophosphorus pesticides in the U.S. population. Environ. Health Perspect. 112 (2), 186–200. https://doi.org/10.1289%2Fehp.6503 DOI: https://doi.org/10.1289/ehp.6503
  6. Batish D.R., Setia N., Singh H.P., Kohli R.K., 2004. Phytotoxicity of lemon-scented eucalypt oil and its potential use as a bioherbicide. Crop Prot. 23(12), 1209–1214. https://doi.org/10.1016/j.cropro.2004.05.009 DOI: https://doi.org/10.1016/j.cropro.2004.05.009
  7. Bewick T.A., Porter J.C., Ostrowski R.C., 2000. SmolderTM: A bioherbicide for suppression of dodder (Cuscuta spp.). Proc. South. Weed Sci. Soc. Abstracts 53, 152.
  8. Boeke S.J., Boersma M.G., Alink G.M., Van Loon J.J., Van Huis A., Dicke M., Rietjens I.M., 2004. Safety evaluation of neem (Azadirachta indica) derived pesticides. J. Ethnopharmacol. 94(1), 25–41. https://doi.org/10.1016/j.jep.2004.05.011 DOI: https://doi.org/10.1016/j.jep.2004.05.011
  9. Boyd N.S., Brennan E.B., Fennimore S.A., 2006. Stale seedbed techniques for organic vegetable production. Weed Technol. 20, 1052–1057. DOI: https://doi.org/10.1614/WT-05-109.1
  10. Boyetchko S.M., Bailey K.L., Hynes R.K., Peng G., 2007. Development of an inundated mycoherbicide: BioMal®. In: C. Vincent, M.S. Goettel., G. Lazarovits (eds.), Biological control: global perspective. CABI Publishing, Wallingford, 274–283. http://dx.doi.org/10.1079/9781845932657.0274 DOI: https://doi.org/10.1079/9781845932657.0274
  11. Busi R., Vila-Aiub M.M., Beckie H.J., Gaines T.A., Goggin D.E., Kaundun S.S., Lacoste M., Neve P., Nissen S.J., Norsworthy J.K., Renton M., Shaner D.L., Tranel P.J., Wright T., Yu Q., Powles S.B., 2013. Herbicide-resistant weeds: from research and knowledge to future needs. Evol. Appl. 6(8), 1218–1221. https://doi.org/10.1111%2Feva.12098 DOI: https://doi.org/10.1111/eva.12098
  12. Campe R., Hollenbach E., Kämmerer L., Hendriks J., Höffken H.W., Kraus H., Lerchl J., Mietzner T., Tresch S., Witschel M., Hutzler J., 2018. A new herbicidal site of action: Cinmethylin binds to acyl-ACP thioesterase and inhibits plant fatty acid biosynthesis. Pestic. Biochem. Physiol. 148, 116–125. https://doi.org/10.1016/j.pestbp.2018.04.006 DOI: https://doi.org/10.1016/j.pestbp.2018.04.006
  13. Cartwright K., Boyette D., Roberts M., 2010. Lockdown®: Collego® bioherbicide gets a second act. Phytopathology 100, S162.
  14. Charudattan R., Hiebert E., 2007. A plant virus as a bioherbicide for tropical soda apple, Solanum viarum. Outlooks Pest Manag. 18(4), 167. DOI: https://doi.org/10.1564/18aug07
  15. Chaubey M.K., 2012. Responses of Tribolium castaneum (Coleoptera: Tenebrionidae) and Sitophi-lus oryzae (Coleoptera: Curculionidae) against essential oils and pure compounds. Herba Pol. 58(3), 33–45.
  16. Dayan F.E., Duke S.O., Grossmann K., 2010. Herbicides as probes in plant biology. Weed Sci. 58(3), 340–350. http://dx.doi.org/10.1614/WS-09-092.1 DOI: https://doi.org/10.1614/WS-09-092.1
  17. Dolinsek J.A., Kovac M., Zel J., Camloh M., 2007. Pyrethrum (Tanacetum cinerariifolium) from the northern Adriatic as a potential source of natural insecticide. Annales: Series Historia Natu-ralis 17(1), 39–46.
  18. Duke S.O., 2005. Taking stock of herbicide-resistant crops ten years after introduction. Pest Manag. Sci. 61(3) Special Issue: Herbicide‐resistant crops from biotechnology, 211–218. https://doi.org/10.1002/ps.1024 DOI: https://doi.org/10.1002/ps.1024
  19. Duke S.O., Powles S.B., 2008. Glyphosate: a once-in-a-century herbicide. Pest Manag. Sci. 64(4) Special Issue: Glyphosate‐Resistant weeds and crops, 319–325. https://doi.org/10.1002/ps.1518 DOI: https://doi.org/10.1002/ps.1518
  20. Duke S.O., Evidente A., Vurro M., 2019. Natural products in pest management: Innovative ap-proaches for increasing their use. Pest Manag. Sci. 75(9) Special Issue: Natural products in pest management, 2299–2300. https://doi.org/10.1002/ps.5552 DOI: https://doi.org/10.1002/ps.5552
  21. Duke S.D., Pan Z., Bajsa-Hirschel J., Boyette C.D., 2022. The potential future roles of natural compounds and microbial bioherbicides in weed management in crops. Adv. Weed Sci. 40(spe1), e020210054. https://doi.org/10.51694/AdvWeedSci/2022;40:seventy-five003 DOI: https://doi.org/10.51694/AdvWeedSci/2022;40:seventy-five003
  22. Directive of the European Parliament and of the Council No. 2009/128/EC of 21 October 2009 established a framework for Community action for the sustainable use of pesticides (Dz.U. UE L 309 z 21.11.2009), https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L: 2009:309:0071:0086:pl:PDF [in Polish].
  23. European Commission, 2020. Chemicals strategy for sustainability towards a toxic-free environ-ment, Brussels, 14.10.2020, https://ec.europa.eu/environment/pdf/chemicals/2020/10/Strategy.pdf
  24. FAO, 2022. World Food and Agriculture − Statistical Pocketbook 2022. Rome. https://doi.org/10.4060/cc2212en DOI: https://doi.org/10.4060/cc2212en
  25. FAOSTAT, 2022. FAOSTAT Pesticides Use – Country Notes, June 2022, https://fenixservices.fao.org/faostat/static/documents/RP/RP_e_Country_Notes.pdf
  26. Frabboni L., Tarantino A., Petruzzi F., Disciglio G., 2019. Bio-herbicidal effects of oregano and rosemary essential oils on chamomile (Matricaria chamomilla L.) crop in organic farming sys-tem. Agronomy 9(9), 475. http://dx.doi.org/10.3390/agronomy9090475 DOI: https://doi.org/10.3390/agronomy9090475
  27. Freire C., Koifman R.J., Koifman S., 2015. Hematological and hepatic alterations in Brazilian popu-lation heavily exposed to organochlorine pesticides. J. Toxicol. Environ. Health, Part A, 78(8), 534–548. https://doi.org/10.1080/15287394.2014.999396 DOI: https://doi.org/10.1080/15287394.2014.999396
  28. Gaines T.A., Duke S.O., Morran S., Rigon C., Tranel P.J., Küpper P.J., 2020. Mechanisms of evolved herbicide resistance. J. Biol. Chem. 295(30), 10307–10330. https://doi.org/10.1074/jbc.rev120.013572 DOI: https://doi.org/10.1074/jbc.REV120.013572
  29. Gale V., Goutler K., 2013. Field evaluation of a bioherbicide for control of parkinsonia (Parkin-sonia aculeate) in Australia. Proceedings of 19th Australasian Plant Pathology Conference, Auckland, New Zealand. Adelaide: Australasian Plant Pathology Society, pp. 43.
  30. Góral J., Rembisz W., 2017. Produkcja w rolnictwie w kontekście ochrony środowiska [Production in agriculture in the context of environmental protection]. Rocz. Nauk. Ekonom. Rol. Rozw. Obsz. Wiej. 104(1), 7–21. https://doi.org/ 10.22630/RNR.2017.104.1.1 [in Polish]. DOI: https://doi.org/10.22630/RNR.2017.104.1.1
  31. Graña E., Días-Tielas C., Sánchez-Moreiras A.M., Reigosa M.J., Celiero M., Abagyan R., 2020. Transcriptome and binding data indicate that citral inhibits single strand DNA binding proteins. Physiol. Plant. 169, 99–109, https://doi.org/10.1111/ppl.13055 DOI: https://doi.org/10.1111/ppl.13055
  32. Grotowska M., Janda K., Jakubczyk K., 2018. Wpływ pestycydów na zdrowie człowieka [Effect of pesticides on human health]. Pomeranian J. Life Sci. 64(2), 42–50 [in Polish]. DOI: https://doi.org/10.21164/pomjlifesci.403
  33. Grudzińska M., Czerko, Z., 2016. Olejki eteryczne z mięty pieprzowej i kminku jako naturalne inhibitory kiełkowania bulw ziemniaka oraz ich wpływ na cechy sensoryczne bulw po ugo-towaniu [Essential oils of peppermint and caraway as natural sprout inhibitors in potato tubers during storage and their effect on sensory quality after cooking]. Annales UMCS, Sec. E, Agric. 71(1), 1–12. https://doi.org/10.24326/as.2016.1.1 [in Polish]. DOI: https://doi.org/10.24326/as.2016.1.1
  34. Grzyb A., Waraczewska Z., Niewiadomska A., Wolna-Maruwka A., 2019. Czym są biopreparaty i jakie jest ich zastosowanie? [What are biopreparations and what is their use?]. Nauka Przyr. Tech. 13(2), 65–76. http://dx.doi.org/10.17306/J.NPT.2019.2.7 [in Polish].
  35. Hassaan M.A., El Nemr A., 2020. Pesticides pollution: Classifications, human health impact, extrac-tion and treatment techniques. Egypt. J. Aquat. Res. 46(3), 207–220. https://doi.org/ DOI: https://doi.org/10.1016/j.ejar.2020.08.007
  36. 1016/j.ejar.2020.08.007 DOI: https://doi.org/10.1088/1475-7516/2020/08/007
  37. Hazrati H., Saharkhiz M.J., Moein M., Khoshghalb H., 2018, Phytotoxic effects of several essential oils on two weed species and Tomato. Biocatal. Agric. Biotechnol. 13, 204–212. https://doi.org/10.1016/j.bcab.2017.12.014 DOI: https://doi.org/10.1016/j.bcab.2017.12.014
  38. He B., Hu Y., Wang W., Yan W., Ye Y., 2022. The progress towards novel herbicide modes of action and targeted herbicide development. Agronomy 12, 2792. https://doi.org/10.3390/ agronomy12112792 DOI: https://doi.org/10.3390/agronomy12112792
  39. Hintz W., 2007. Development of Chondrostereum purpureum as a mycoherbicide for deciduous brush control. In: C. Vincent, M.S. Goettel, G. Lazarovits (eds.), Biological control: a global perspective. CAB International, Wallingford, 284–290. DOI: https://doi.org/10.1079/9781845932657.0284
  40. Hitmi A., Coudret A., Barthomeuf C., 2000. The production of pyrethrins by plant cell and tissue cultures of Chrysanthemum cinerariaefolium and Tagetes species. Crit. Rev. Plant Sci. 19(1), 69–89. https://doi.org/10.1080/10409230091169230 DOI: https://doi.org/10.1080/07352680091139187
  41. Horodyska I.M., Ternovyi Y., Chub A., Lishchuk A., Draga M., 2021. Technologies of protection and nutrition in agrophytocenoses of legumes for organic seed production. Environ. Res. Eng. Manag. 77(1), 47–58. https://doi.org/10.5755/j01.erem.77.1.23459 DOI: https://doi.org/10.5755/j01.erem.77.1.23459
  42. Ibáñez M.D., Blázquez M.A., 2019. Phytotoxic effects of commercial Eucalyptus citriodora, La-vandula angustifolia, and Pinus sylvestris essential oils on weeds, crops, and invasive species. Molecules 24(15), 2847. http://dx.doi.org/10.3390/molecules24152847 DOI: https://doi.org/10.3390/molecules24152847
  43. Imaizaumi S., Honda M., Fujimori T., 1999. Effect of temperature on the control of annual blue-grass (Poa annua L.) with Xanthomonas campestris cv. Poae (JT-P482). Biol Control. 16(1), 13–17. https://doi.org/10.1006/bcon.1999.0728 DOI: https://doi.org/10.1006/bcon.1999.0728
  44. Jemba B.J.M., Tersim N., Toudert K.T., Khouja M.L., 2012. Insecticidal activities of essential oils from leaves of Laurus nobilis L. from Tunisia, Algeria and Morocco, and comparative chemi-cal composition. J. Stored Prod. Res. 48, 97–104. https://doi.org/10.1016/j.jspr.2011.10.003 DOI: https://doi.org/10.1016/j.jspr.2011.10.003
  45. Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Zidek A., Potapenko A., Bridgland A., Meyer C., Kohl S.A.A., Ballard A.J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A.W., Kavukcuoglu K., Kohli P., Hassabis D., 2021. Highly accurate protein struc-ture prediction with AlphaFold. Nature 596, 583–589. https://doi.org/10.1038/s41586-021-03819-2 DOI: https://doi.org/10.1038/s41586-021-03819-2
  46. Kachhawa D., 2017. Microorganisms as a biopesticides. J. Entomol. Zool. Stud. 5(3), 468–473.
  47. Katagi T., 2010. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organ-isms. Rev. Environ. Contam. Toxicol. 204, 1–132. https://doi.org/10.1007/978-1-4419-1440-8_1 DOI: https://doi.org/10.1007/978-1-4419-1440-8_1
  48. Kaur S., Singh H., Mittal S., Batish D.R., Kohli R.K., 2010. Phytotoxic effects of volatile oil from Artemisia scoparia against weeds and its possible use as a bioherbicide. Ind. Crops Prod. 32, 54–61. https://doi.org/10.1016/J.INDCROP.2010.03.007 DOI: https://doi.org/10.1016/j.indcrop.2010.03.007
  49. Kaur R., Kaur Mavi G., Raghav S., Khan I., 2019. Pesticides classification and its impact on envi-ronment. Int. J. Curr. Microbiol. App. Sci. 8(3), 1889–1897. https://doi.org/10.20546 /ijcmas. 2019.803.224 DOI: https://doi.org/10.20546/ijcmas.2019.803.224
  50. Kennedy A.C., Johnson B.N., Stubbs T.L., 2001. Host range of a deleterious rhizobacterium for biological Control downy brome. Weed Sci. 49(6), 792–797. https://doi.org/10.1614/0043-1745(2001)049%5B0792:HROADR%5D2.0.CO;2 DOI: https://doi.org/10.1614/0043-1745(2001)049[0792:HROADR]2.0.CO;2
  51. Kezios K.L., Liu X., Cirillo P.M., Cohn B.A., Kalantzi O.I., Wang Y., Petreas M.X., Park J.S., Factor-Litvak P., 2013. Dichlorodiphenyltrichloroethane (DDT), DDT metabolites and preg-nancy outcomes. Reprod. Toxicol. 35, 156–164. https://doi.org/10.1016/j.reprotox.2012.10.013 DOI: https://doi.org/10.1016/j.reprotox.2012.10.013
  52. Knopp B.R., Hansen D.R., Thomsen S.V., 2002. Establishment and dispersal of Puccinia thlaspeos in field populations of Dyer’s woad. Plant Dis. 86(3), 241–246. https://doi.org/10.1094/ DOI: https://doi.org/10.1094/PDIS.2002.86.3.241
  53. PDIS.2002.86.3.241 DOI: https://doi.org/10.1023/A:1020346116347
  54. Kordali S., Cakir A., Mavi A., Kilic H., Yildirim A., 2005. Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish Artemisia species z. J. Agric. Food Chem. 53, 1408–1416. https://doi.org/10.1021/jf048429n DOI: https://doi.org/10.1021/jf048429n
  55. Kowalska G., Kowalski R.. 2019. Pestycydy – zakres i ryzyko stosowania, korzyści i zagrożenia. Praca przeglądowa. Ann. Hortic. 29(2), 5–25. https://doi.org/10.24326/ah.2019.2.1 DOI: https://doi.org/10.24326/ah.2019.2.1
  56. Książek-Trela P., Bielak E., Węzka D., Szpyrka E., 2022. Effect of three commercial formulations containing Effective Microorganisms (EM) on Diflufenican and Flurochloridone degradation in soil. Molecules 27(14), 4541. https://doi.org/10.3390/molecules27144541 DOI: https://doi.org/10.3390/molecules27144541
  57. Lim Y.P., Lin C.L., Hung D.Z., Ma W.C., Lin Y.N., Kao C.H., 2015. Increased risk of deep vein thrombosis and pulmonary thromboembolism in patients with organophosphate intoxication: a nationwide prospective cohort study. Medicine 94(1), e341. https://doi.org/10.1097/MD.0000000000000341 DOI: https://doi.org/10.1097/MD.0000000000000341
  58. Ma R., Kaundun S.S., Tranel P.J., Riggins C.W., McGinness D.L., Hager A.G., Hawkes T., McIn-doe E., Riechers D.E., 2013. Distinct detoxification mechanisms confer resistance to mesotri-one and atrazine in a population of waterhemp. Plant Physiol. 163(1), 363–377. https://doi.org/10.1104/pp.113.223156 DOI: https://doi.org/10.1104/pp.113.223156
  59. Martyniuk S., 2012. Factor affecting the use of microbial biopesticides in plant protection. Prog. Plant Prot. 52(4), 957–962.
  60. Mehrpour O., Karrari P., Zamani N., Tsatsakis A.M., Abdollahi M., 2014. Occupational exposure to pesticides and consequences on male semen and fertility: a review. Toxicol. Lett. 230(2), 146–156. http://doi.org/10.1016/j.toxlet.2014.01.029. DOI: https://doi.org/10.1016/j.toxlet.2014.01.029
  61. Mfarrej M.F., Rara F.M., 2019. Competitive, sustainable natural pesticides. Acta Ecol. Sin. 39, 145–151. https://doi.org/10.1016/J.CHNAES.2018.08.005 DOI: https://doi.org/10.1016/j.chnaes.2018.08.005
  62. Mnif W., Hassine A.I.H., Bouaziz A., Bartegi A., Thomas O., Roig B., 2011. Effect of endocrine disruptor pesticides: a review. Int. J. Environ. Res. Public Health 8(6), 2265–2303. https://doi.org/10.3390/ijerph8062265 DOI: https://doi.org/10.3390/ijerph8062265
  63. Mołoń A., Durak R., 2018. Biopestycydy jako stymulatory odporności roślin [Biopesticides as plant resistant stimulators]. Pol. J. Sustain. Dev. 22(10), 69–74. https://doi.org/10.15584/pjsd.2018.22.1.9 [in Polish]. DOI: https://doi.org/10.15584/pjsd.2018.22.1.9
  64. Morris M.J. 1989. A method for controlling Hakea sericea Schrad. seedlings using the fungus Colletotrichum gloeosporioides (Penz.) Sacc. Weed Res. 29(6), 449–454. DOI: https://doi.org/10.1111/j.1365-3180.1989.tb01317.x
  65. Morris M.J., Wood A.R., den Breeÿen A., 1999. Plant pathogens and biological control of weeds in South Africa: a review of projects and progress during the last decade. Afr. Entomol. Memoir 1, 125–128.
  66. Motharasan M., Shukor M.Y., Yasid N.A., Wan Johari W.L., Ahmad S.A., 2018. Environmental fate and degradation of glyphosate in soil. Pertanika J. Sch. Res. Rev. 4, 102–116.
  67. Mrówczyński M., Roth M., 2009. Zrównoważone stosowanie środków ochrony roślin [Sustainable use plant protection products]. Probl. Inż. Rol. 17(2), 93–98 [in Polish].
  68. Mugisha-Kamatenesi M., Deng A.L., Ogendo J.O., Omolo E.O., Mihale M.J., Otim M., Buyungo J.P., Bett P.K., 2008. Indigenous knowledge of field insect pests and their management around lake Victoria basin in Uganda. Afr. J. Environ. Sci. Technol. 2, 342–348.
  69. Nayak P., Dibyarani., 2020. Botanical pesticides: An insecticide from plant derivatives. Biot. Res. Today 2(8), 727–730.
  70. Nicolopoulou-Stamati P., Maipas S., Kotampasi C., Stamatis P., Hens L., 2016. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front. Public Health 4, 148. https://doi.org/10.3389/fpubh.2016.00148 DOI: https://doi.org/10.3389/fpubh.2016.00148
  71. Nisbet A.J., 2000. Azadirachtin from the neem tree Azadirachta indica: its action against insects. An. Soc. Entomol. Bras. 29(4), 615–632. https://doi.org/10.1590/S0301-80592000000400001 DOI: https://doi.org/10.1590/S0301-80592000000400001
  72. Nowak J., Górna B., Nowak W., 2013. Wykorzystanie grzybów strzępkowych do biodegradacji ścieków przemysłu ziemniaczanego z jednoczesną produkcją biomasy pleśniowej na cele pa-szowe [Applying filamentous fungi to biodegradation of wastewater from potato industry with simultaneous production of mould biomass for forage]. Żywn. Nauka Technol. Jakość 20(6), 191–203 [in Polish].
  73. Orlikowski L.B., Skrzypczak Cz., 2003. Biocides in the control of soil-borne and leaf pathogens. Hortic. Veget. Grow. 22, 426–433.
  74. O’Sullivan J., van Acker R., Grohs R., Riddle R., 2015. Improved herbicidal efficacy for organical-ly grown vegetables. Org Agric. 5(4), 315–322. https://doi.org/10.1007/s13165-015-0107-5 DOI: https://doi.org/10.1007/s13165-015-0107-5
  75. Owen M.D., Zelaya I.A., 2005. Herbicide-resistant crops and weed resistance to herbicides. Pest Manag. Sci. 61, 301–311. DOI: https://doi.org/10.1002/ps.1015
  76. Petit S., Munier-Jolain N., Bretagnolle V., Bockstaller C., Gaba S., Cordeau S., Lechenet M., Mé-ziére D., Colbach N., 2015. Ecological intensification through pesticide reduction: weed con-trol, weed biodiversity and sustainability in arable farming. Environ. Manage. 56(5), 1078–1090. https://doi.org/10.1007/s00267-015-0554-5 DOI: https://doi.org/10.1007/s00267-015-0554-5
  77. Phatak S.C., Sumner D.R., Wells H.D., Bell D.K., Glaze N.C., 1983. Biological control of yellow nutsedge with the indigenous rust fungus Puccinia canaliculata. Science 219(4591), 1446–1447. DOI: https://doi.org/10.1126/science.219.4591.1446
  78. Regulation (EC) No 1907/2006 – Registration, Evaluation, Authorisation and Restriction of Chemi-cals (REACH). OJ L 396, 30.12.2006.
  79. Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and re-pealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006 (Text with EEA relevance). Dz.U. UE L 353 z 31.12.2008, s. 1, http://data. europa.eu/ eli/reg/2008/1272/oj/pol [in Polish].
  80. Ridings W.H., 1986. Biological control of stranglervine in citrus – a researcher’s view. Weed Sci. 34(S1), 31–32. DOI: https://doi.org/10.1017/S004317450006834X
  81. Said-Al Ahl H.A., Hikal W.M., Tkachenko K.G., 2017. Essential oils with potential as insecticidal agents: A review. Int. J. Environ. Plan. Manag. 3(4), 23–33.
  82. Sammons R.D., Gaines T.A., 2014. Glyphosate resistance: state of knowledge. Pest Manag. Sci. 70, 1367–1377. https://doi.org/10.1002/ps.3743 DOI: https://doi.org/10.1002/ps.3743
  83. Schmutterer H., 1990. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu. Rev. Entomol. 35(1), 271–297. https://doi.org/10.1146/annurev.en.35.010190.001415 DOI: https://doi.org/10.1146/annurev.en.35.010190.001415
  84. Sołtys D., Krasuska U., Bogatek R., Gniazdowska A., 2013. Allelochemicals as bioherbicides — present and perspectives. In: A.J. Price, J.A. Kelton (eds.), Herbicides – current research and case studies in use, 517–542. https://doi.org/10.5772/56185 DOI: https://doi.org/10.5772/56185
  85. Sparks T.C., Lorsbach B.A., 2017. Perspectives on the agrochemical industry and agrochemical discovery. Pest Manage. Sci. 73(4), 672–677. https://doi.org/10.1002/ps.4457 DOI: https://doi.org/10.1002/ps.4457
  86. Steenland K., Jenkins B., Ames R.G., O’Malley M., Chrislip D., Russo J., 1994. Chronic neurolog-ical sequelae to organophosphate pesticide poisoning. Am. J. Public Health 84(5), 731–736. DOI: https://doi.org/10.2105/AJPH.84.5.731
  87. Sun W., Shahrajabian M.H., Cheng Q., 2020. Pyrethrum an organic and natural pesticide. J. Biol. Environ. Sci. 14(40), 41–44. http://hdl.handle.net/11452/21396
  88. Tudi M., Ruan H., Wang L., Lyu J., Sadlera R., 2021. Agriculture development, pesticide applica-tion and its impact on the environment. Int. J. Environ. Res. Public Health 18(3), 1112. https://doi.org/10.3390/ijerph18031112 DOI: https://doi.org/10.3390/ijerph18031112
  89. Upadhayay V.K., Singh A.V., Pareek N., 2018. An insight in decoding the multifarious and splen-did role of microorganisms in crop biofortification. Int. J. Curr. Microbiol. Appl. Sci. 7(6), 2407–2418. https://doi.org/10.20546/ijcmas.2018.706.286 DOI: https://doi.org/10.20546/ijcmas.2018.706.286
  90. Watson A.K., 2018. Microbial herbicides. In: N.E. Korres, N.R. Burgos, S.O. Duke (eds.). Weed control: sustainability, hazards and risks in cropping systems worldwide. Boca Raton: CRC, 133–152. DOI: https://doi.org/10.1201/9781315155913-7
  91. Wójtowicz A.K., Szychowski K.A., 2014. DDT – przekleństwo czy błogosławieństwo XX wieku? [DDT – curse or blessing of the 20th century?]. Wszechświat 115(10–12), 284–287 [in Polish].
  92. WRP 2020/163. Resistance of weeds to herbicides. Agricultural News Poland. https://www.wrp.pl/resistance-weed-na-herbicides/ [access: 23.02.2023].
  93. Wrzosek J., Gworek B., Maciaszek D., 2009. Środki ochrony roślin w aspekcie ochrony środowi-ska [Plant protection products and environmental protection]. Ochr. Śr. Zasobów Nat. (39), 75–88 [in Polish].
  94. Yan Y., Liu Q., Zang X., Yuan S., Bat-Erdene U., Nguyen C., Gan J., Zhou J., Jacobsen S.E., Tang Y., 2018. Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action. Nature 559, 415–418. DOI: https://doi.org/10.1038/s41586-018-0319-4
  95. Żelechowska A., Biziuk M., Wiergowski M., 2001. Charakterystyka pestycydów [Characteristics of pesticides]. In: M. Biziuk (ed.), Pestycydy – występowanie, oznaczanie i unieszkodliwianie [Pesticides – occurrence, determination and disposal]. WNT, Warszawa, 15–43 [in Polish].
  96. Zheljazkov V.D., Micalizzi G., Yilma S., Cantrell C.L., Reichley A., Mondello L., Semerdjieva I., Radoukova T., 2022. Melissa officinalis L. as a sprout suppressor in Solanum tuberosum L. and an alternative to synthetic pesticides. J. Agric. Food Chem. 70(44), 14205–14219. https://doi.org/10.1021/acs.jafc.2c05942 DOI: https://doi.org/10.1021/acs.jafc.2c05942

Downloads

Download data is not yet available.

Podobne artykuły

1 2 3 4 5 6 7 8 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.