Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Skip to main navigation menu Skip to main content Skip to site footer

Vol. 80 No. 4 (2025)

Articles

The temperature influence on the energy and germination capacity of seeds and the effect of the substrate on the yield the withania somnifera in the conditions of south-eastern Poland

DOI: https://doi.org/10.24326/as.2025.5631
Submitted: October 19, 2025
Published: 31.12.2025

Abstract

The aim of this study was to determine the effect of air temperature on the energy and germination capacity of W. somnifera seeds and to assess the effect of different substrates on the yield of the aboveground and root parts. An additional aim of the study was to develop agrotechnical recommendations for pioneering cultivation of this species in the temperate climate of south-eastern Poland. Germination energy and capacity were evaluated at 10°C, 20°C, and 30°C. Additionally, the impact of three substrate types – soil (A), a 50 : 50 mixture of soil and compost (B), and pure compost (C) – on the yield of shoots and roots was assessed over the years 2021–2023. The results indicate that the germination energy and capacity of W. somnifera seeds were highly dependent on air temperature. The highest germination energy was observed at 30°C in all study years, with an average value of 93.56%, while the lowest was recorded at 10°C (average: 0.44%). Germination capacity was also highest at 30°C, reaching an average of 95.45%, indicating that this temperature is optimal for maximizing both germination energy and capacity. Substrate type had a significant effect on the yield of both aboveground and root parts. The highest yield of aboveground biomass was obtained on pure compost (C), while the lowest was recorded on the soil-compost mixture (B). Over the three years, substrate C consistently provided the highest root yields, averaging 3.5 t ha–1, followed by substrate B (3.2 t ha–1) and substrate A (3.1 t ha–1). This study demonstrates that W. somnifera has high adaptive potential for cultivation in Poland; however, it requires high air temperature during seed germination and appropriate substrate selection. These results allow for the development of agronomic recommendations for the cultivation of W. somnifera in south-eastern Poland.

References

  1. Afewerki H.K., Ayodeji A.E., Tiamiyu B.B. et al., 2021. Critical review of Withania somnifera (L.) Donal: ethnobotany, pharmacological efficacy, and commercialization significance in Africa. Bull. Natl. Res. Cent. 45(1), 176. https://doi.org/10.1186/s42269-021-00635-6
  2. Chauhan S., Madiya T., Jain D. et al., 2022. Early selective strategies for higher-yielding bio-economic Indian ginseng based on genotypic study through metabolic and molecular markers. Saudi J. Biol. Sci. 29(4), 3051–3061. https://doi.org/10.1016/j.sjbs.2022.01.030
  3. Cherszkowicz E., 1971. Hydrothermischer coefficient (HTK) VI, VII, VIII Karte Agraklimatische Ressourcen des Territoriums der sozialistischen Länder Europas. Sofia, 123.
  4. Core R., Team R.A., 2023. Language and environment for statistical computing.
  5. Crawley M.J., 2013. The R book. John Wiley & Sons Ltd., Chichester.
  6. Dipankar S.P., Dani M.M., Anirudhan R. et al., 2025. Pharmacological Insights into ashwagandha (Withania somnifera). A Review of its immunomodulatory and neuroprotective properties. Cu-reus 17(8), e89856. https://doi:10.7759/cureus.89856
  7. Faligowska A., Panasiewicz K., Szymańska G. et al., 2018. Wpływ sposobu i gęstości siewu na produktywność i jakość nasion łubinu białego. Część II. Wartość siewna i wigor nasion. Fragm. Agron. 35(3), 47–54 [in Polish].
  8. Faligowska A., Szukała J., 2012. Influence of sprinkling irrigation and soil tillage systems on vigor and sowing value of yellow lupine seeds. Sci. Natur. Technol. 6(2), #26.
  9. Genze N., Bharti R., Grieb M. et al., 2020. Accurate machine learning-based germination detection, prediction and quality assessment of three grain crops. Plant Methods 16(1), 157. https://doi.org/10.1186/s13007-020-00699-x
  10. Handzel A., Krawczyk J.B., Latawiec A.E. et al., 2017. Determination of element contents and phys-icochemical properties of selected soils. Infrastructure Ecol. Rur. Areas 1(2), 419–432.
  11. Helfenstein J., Müller I., Grater R. et al., 2016. Organic wheat farming improves grain zinc concen-tration. PLoS ONE 11(8), e0160729. https://doi.org/10.1371/journal.pone.0160729
  12. ISTA – International Seed Testing Association, 2004. Seed Sci. Technol. 21, Supplement.
  13. Kambizi L., Adebol P.O., Afolayan A.J., 2006. Effects of temperature, prechilling and light on seed germination of Withania somnifera; a high-value medicinal plant. S. Afr. J. Bot. 72(1), 11–14.
  14. Kaur A., Pratap B.S., Pati K. et al., 2018. Organic cultivation of Ashwagandha with improved bio-mass and high content of active withanolides: use of vermicompost. PLoS ONE 13(4), e0194314. https://doi.org/10.1371/journal.pone.0194314
  15. Khabiya R., Choudhary G.P., Jnanesha A.C. et al., 2024. An insight into the potential varieties of Ashwagandha (Indian ginseng) for better therapeutic efficacy. Ecol. Frontiers. 44(3), 444–450.
  16. Kucera B., Cohn M.A., Leubner-Metzger G., 2005. Plant hormone interactions during seed dorman-cy release and germination. Seed Sci. Res. 15(4), 281–307. https://doi.org/10.1079/ SSR2005218
  17. Kumar B., Yadav R., Singh S. et al., 2016. Seed germination behavior of Withania spp. under dif-ferent temperature regimes. J. Crop Improv. 30(3), 287–292. https://doi.org/10.1080/ 15427528.2016.1151849
  18. Kumar S., Verma S.K., Yadav A. et al., 2022. Tillage-based crop establishment methods and zinc application enhance productivity, grain quality, profitability and energetics of direct-seeded rice in potentially zinc-deficient soil in the subtropical conditions of India. Commun. Soil Sci. Plan. 53(9), 1085–1099. https://doi.org/10.1080/00103624.2022.2043340
  19. Lim S.L., Yeong W.T., Lim P. et al., 2015. The use of vermicompost in organic farming: overview, effects on soil and economics. J. Sci. Food Agric. 95(6), 1143–1156. https://doi.org/10.1002/ jsfa.6849
  20. McGill R., 1978. American Statistician 32, 12–16.
  21. Mendiburu F., 2021. Agricola: Statistical Procedures for Agricultural Research. R package.
  22. Mikulska P., Malinowska M., Ignacyk M. et al., 2023. Ashwagandha (Withania somnifera) –current research on the health-promoting activities. A narrative review. Pharma 15(4), 1057. https:// doi.org/10.3390/pharmaceutics15041057
  23. Mohamed S.O., Kandiel M.A., Abo Zaid O.A.R. et al., 2021. Biochemical effect of Nigella sativa seeds on fatty acids, lipid profile, and antioxidants of laying hens. J. World Poult. Res. 11(3), 338–343. https://dx.doi.org/10.36380/jwpr.2021.40
  24. Mondal K., Paul A., 2023. Challenges and opportunities in the cultivation of Ashwagandha (With-ania somnifera Donal). Agric. Food 5(5), 424–426.
  25. Myślińska E., 2010. Laboratoryjne badania gruntów i gleb. Wanito UW, Warszawa [in Polish].
  26. Neina D., 2019. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci., 1–9. https://doi.org/10.1155/2019/5794869
  27. Nonaka H., Bassel G.W., Bewley J.D., 2010. Germination – still a mystery. Plant Sci. 179(6), 574–581. https://doi.org/10.1016/j.plantsci.2010.02.010
  28. Noworolnik K., 2015. Warunki glebowe a plonowanie zbóż i ich współdziałania z czynnikami agro-technicznymi. Stud. Rap. IUNG-PIB 44(18), 119–133 [in Polish].
  29. Obidoska G., Sadowska A., 2004. Próby uprawy polowej Withania somnifera (L.) Dun. oraz ocena plonu i wartości surowca krajowego. Biul. Inst. Hod. Akl. Rośl. 233, 173–180 [in Polish].
  30. Ostrowska A., Gawliński S., Szczesiakowa Z., 1991. Metody analizy i oceny właściwości gleb i roślin. Inst. Ochr. Roślin. 310 [in Polish].
  31. Patel R.J., Rank H.D., 2022. Water use efficiency of wheat under different irrigation regimes using high discharge drip irrigation system. Agric. Eng. Today. 44(2), 19–31. https://doi.org/ 10.52151/aet2020442.1518
  32. Pisulewska E., Krochmal-Marczak B., Jędrzejewska P. et al., 2025. Yield and antioxidant properties of herb and root of ashwagandha (Withania somnifera L.) grown with permaculture under sub-carpathian conditions. Herbalism 1(11), 7–21. https://doi.org/10.12775/HERB.2025.001
  33. PN-R-04031:1997. Analiza chemiczno-rolnicza gleby. Pobieranie próbek. Polski Komitet Normali-zacyjny, Warszawa [in Polish].
  34. Połumackanycz M., Forencewicz A., Wesołowski M., 2020. Viapiana A. Ashwagandha (Withania somnifera L.) the plant with proven health-promoting properties. Farm. Pol. 76(8), 442–447.
  35. Porter H., Fiorani F., Pieruschka R. et al., 2016. Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. New Phytol. 212(4), 838–855. https://doi.org/10.1111/nph.14243
  36. Press Underwood A.J., 1997. Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge Univ. Press, Cambridge, 504.
  37. Quinn G.P., Keough M.J., 2002. Experimental design and data analysis. Cambridge Univ. Press.
  38. Rymuza K., Radka E., 2021. Assessment of the germination capacity of soybeans depending on the pH of the substrate. Prog. Plant Prot. 61, 201–206. https://doi.org/10.14199/ppp-2021-022
  39. Sharma H., Kumari A., Raigar O.P. et al., 2023. Strategies for improving tolerance to the combined effect of drought and salinity stress in crops. In: A. Kumar, P. Dhansu, A. Mann (eds), Salinity and drought tolerance in plants. Springer Nature, 137–172. https://doi.org/10.1007/978-981-99-4669-3_8
  40. Singh M., Bhutani S., Dinkar N. et al., 2024. Assessment of pharmacological activities of special-ized metabolites of Withania somnifera (L.). S. Afr. J. Bot. 166, 259–271. https://doi.org/10.1016/ j.sajb.2024.01.039
  41. Singh P., Guler R., Singh V. et al., 2015. Biotechnological interventions in Withania somnifera (L.) Donal. Biotechnol. Genet. Eng. Rev. (1–2), 1–20. https://doi.org/10.1080/02648725.2015.1020467
  42. Skowera B., Wojnowski J., 2003. Changes of hydrothermal conditions in Poland in the period 1931–1990. Studia Geogr. 23, 250–261.
  43. Sokal R.R., Rohlf F.J., 1995. Biometry: the principles and practice of statistics in biological research, 3rd ed. W.H. Freeman and Co., New York.
  44. Tukey J.W., 1949. Comparing individual means in the analysis of variance. Biometrics 5, 99–114. https://doi.org/10.2307/3001913
  45. Wickham H., 2016. ggplot2: elegant graphics for data analysis. Springer. J. Statist. Software, 260. http://www.springer.com/gp/book/9783319242750
  46. Xia Y., Feng J., Zhang H. et al., 2024. Effects of soil pH on the growth, soil nutrient composition, and rhizosphere microbiome of Ageratina adenophora. Peer J. 16(12), e17231. https://doi.org/10.7717/peerj.17231
  47. Zar J.H., 2010. Biostatistical analysis, 5th ed. Pearson.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 > >>