Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 78 Nr 4 (2023)

Artykuły

The role of biostimulants in modern fruit tree and shrub cultivation

DOI: https://doi.org/10.24326/as.2023.5235
Przesłane: 6 lipca 2023
Opublikowane: 18-04-2024

Abstrakt

Dynamic changes in the fruit tree and shrub cultivation sector caused, among other things, by a high increase in production costs, the European Green Deal and increasingly high requirements with regard to the quality parameters of the obtained yield and their safety for consumers force producers to continuously introduce new changes in cultivation technology in order to meet all requirements. Choosing the optimum cultivation technology is also crucial to the economic success of farmers, allowing them to continue to operate and grow. One of the fastest growing branches of crop support today is biostimulation. Although biostimulants are not essential for crop production, their use can be fundamental under certain conditions. The aim of this paper was to provide comprehensive information on research in the field of biostimulation of fruit trees and shrubs and to consider the potential use of such preparations in the perspective of maximising the use of fertilisers, plant protection products and improving the quality, structure and microbial life of soils and substrates. At the same time, obtaining the highest possible yield with the highest possible crop quality, fully safe for consumer consumption.

Bibliografia

  1. Akram N.A., Saleem M.H., Shafiq S., Naz H., Farid-ul-Haq M., Ali B., Shafiq F., Iqbal M., Jarem-ko M., Qureshi K.A., 2022. Phytoextracts as crop biostimulants and natural protective agents – a critical review. Sustainability 14(21), 14498. https://doi.org/10.3390/su142114498 DOI: https://doi.org/10.3390/su142114498
  2. Alalaf A.H., Alalam, S.A.T., Al-zebari S.M.K., 2022. The effect of spraying amino acid fertilizer on the growth characteristics and mineral content of pomelo (Citrus grandis) seedlings. Iran. J. Ichthyol. 9, 123–126. https://doi.org/10.13140/RG.2.2.30445.05609
  3. Alam M. Zahidul A.M., Braun G., Norrie J., Hodges D.M., 2013. Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry. Can. J. Plant Sci. 93(1), 23–36. https://doi.org/10.4141/cjps2011-260 DOI: https://doi.org/10.4141/cjps2011-260
  4. Ali O., Ramsubhag A., Jayaraman J., 2021. Biostimulant properties of seaweed extracts in plants: implications towards sustainable crop production. Plants (Basel) 10(3), 531. https://doi.org/10.3390/plants10030531 DOI: https://doi.org/10.3390/plants10030531
  5. Alley M.M., Vanlauwe B., 2009. The role of fertilizers in integrated plant nutrient management. International Fertilizer Industry Association. Tropical Soil Biology and Fertility Institute of the International Centre for Tropical Agriculture, Paris. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7c5c2ba4191283ec94126b4dfd7980a2407c3e57 [access: 10.04.2023].
  6. Araujo L., Pinto F. A.M.F., Vieira J. de S., Pasa M. da S., Valdebenito-Sanhueza R.M., Stadnik M.J., 2020. Use of biostimulants for the management of Apple Scab in orchards. Agropecu. Catarin. 33(3), 60–66. https://doi.org/10.52945/rac.v33i3.751 DOI: https://doi.org/10.52945/rac.v33i3.751
  7. Arioli T., Mattner S., Hepworth, G., McClintock D., McClinock R., 2021. Effect of seaweed extract application on wine grape yield in Australia. J. Appl. Phycol. 33(3). https://10.1007/s10811-021-02423-1 DOI: https://doi.org/10.1007/s10811-021-02423-1
  8. Baniță S., Sestras A., Oltean I., Anamaria C., Bunea C-I., 2020. The influence of hail and treatments with amino-acids on the fertility and biologic balance of grapevines. RJH 1, 111–118. https://doi.org/10.51258/RJH.2020.15 DOI: https://doi.org/10.51258/RJH.2020.15
  9. Battacharyya D., Babgohari M.Z., Rathor P., Prithiviraj B., 2015. Seaweed extracts as biostimulants in horticulture. Hortic. Sci. 196, 39–48. https://doi.org/10.1016/j.scienta.2015.09.012 DOI: https://doi.org/10.1016/j.scienta.2015.09.012
  10. Bogunovic I., Duralija B., Gadze J., Kisic I., 2015. Biostimulant usage for preserving strawberries to climate damages. Hort. Sci. 42(3), 132–140. https://doi.org/10.17221/161/2014-HORTSCI DOI: https://doi.org/10.17221/161/2014-HORTSCI
  11. Botta A., 2013. Enhancing plant tolerance to temperature stress with amino acids: an approach to their mode of action. Acta Hortic. 1009, 29–35. https://doi.org/10.17660/ActaHortic.2013.1009.1 DOI: https://doi.org/10.17660/ActaHortic.2013.1009.1
  12. Boukhari EL. M.E.M., Barakate M., Bouhia Y., Lyamlouli K., 2020. Trends in seaweed extract based biostimulants: manufacturing process and beneficial effect on soil-plant systems. Plants 9(3), 359. https://doi.org/10.3390/plants9030359 DOI: https://doi.org/10.3390/plants9030359
  13. Brown P., Saa S., 2015. Biostimulants in agriculture. Front. Plant Sci. 6, 671. https://doi.org/10.3389/fpls.2015.00671 DOI: https://doi.org/10.3389/fpls.2015.00671
  14. Bulgari R., Franzoni G., Ferrante A., 2019. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9, 306. https://doi.org/10.3390/agronomy9060306 DOI: https://doi.org/10.3390/agronomy9060306
  15. Calvo P., Nelson L., Kloepper J.W., 2014. Agricultural uses of plant biostimulants. Plant Soil 383, 3–41. https://doi.org/10.1007/s11104-014-2131-8 DOI: https://doi.org/10.1007/s11104-014-2131-8
  16. Carvalho S.M.P., Vasconcelos M.W., 2013. Producing more with less: Strategies and novel tech-nologies for plant-based food biofortification. Food Res. Int. 54(1), 961–971. https://doi.org/10.1016/j.foodres.2012.12.021 DOI: https://doi.org/10.1016/j.foodres.2012.12.021
  17. Chalfoun N.R., Durman S.B., Budeguer F., CaroM.d.P., Bertani R.P., Di Peto P., Stenglein S.A., Filippone M.P., Moretti E.R., Díaz R.J.C., Welin B., Castagnaro A.P., 2018. Development of PSP1, a biostimulant based on the elicitor AsES for disease management in monocot and dicot crops. Front. Plant Sci. 9. https://doi.org/10.3389/fpls.2018.00844 DOI: https://doi.org/10.3389/fpls.2018.00844
  18. Chiaiese P., Corrado G., Colla G., Kyriacou M.C., Rouphael Y., 2018. Renewable sources of plant biostimulation: microalgae as a sustainable means to improve crop performance. Front. Plant Sci. 9, 1782. https://doi.org/10.3389/fpls.2018.01782 DOI: https://doi.org/10.3389/fpls.2018.01782
  19. Chouliaras V., Tasioula-Margari M. Chatzissavvidis C., Therios I., Tsabolatidou E., 2009. The effects of a seaweed extract in addition to nitrogen and boron fertilization on productivity, fruit maturation, leaf nutritional status and oil quality of the olive (Olea europaea L.) cultivar Koro-neiki. J. Sci. Food Agric. 89, 984–988. https://doi.org/10.1002/jsfa.3543 DOI: https://doi.org/10.1002/jsfa.3543
  20. Colavita G.M., Spera N., Blackhall V., Sepulveda G.M., 2011. Effect of seaweed extract on pear fruit quality and yield. Acta Hortic 909, 601–607.https://doi.org/10.17660/ActaHortic.2011.909.72 DOI: https://doi.org/10.17660/ActaHortic.2011.909.72
  21. Colla G., Nardi S., Cardarelli M., Ertani A., Lucini L., Canaguier R., Rouphael Y., 2015. Protein hydrolysates as biostimulants in horticulture. Hortic. Sci. 196, 28–38. https://doi.org/10.1016/j.scienta.2015.08.037 DOI: https://doi.org/10.1016/j.scienta.2015.08.037
  22. Colla G., Rouphael Y., 2015. Biostimulants in horticulture. Hortic. Sci. 196, 1–2. https://doi.org/10.1016/j.scienta.2015.10.044 DOI: https://doi.org/10.1016/j.scienta.2015.10.044
  23. D’Addabbo T., Laquale, S., Perniola M., Candido V., 2019. Biostimulants for plant growth promo-tion and sustainable management of phytoparasitic nematodes in vegetable crops. Agronomy 9, 616. https://doi.org/10.3390/agronomy9100616 DOI: https://doi.org/10.3390/agronomy9100616
  24. Drobek M., Frąc M., Cybulska J., 2019. Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress – a review. Agrono-my 9, 335. https://doi.org/10.3390/agronomy9060335 DOI: https://doi.org/10.3390/agronomy9060335
  25. Eckardt N.A., Cominelli E., Galbiati M., Tonelli C., 2009. The future of science: food and water for life. Plant Cell 21(2), 368–372. https://doi.org/10.1105/tpc.109.066209 DOI: https://doi.org/10.1105/tpc.109.066209
  26. Fornes F., Sánchez-Perales M., Guardiola J.L., 2005. Effect of a seaweed extract on the productivity of ‘de Nules’ clementine mandarin and Navelina orange. Botanica Marina 45(5), 486-489. https://doi.org/10.1515/BOT.2002.051 DOI: https://doi.org/10.1515/BOT.2002.051
  27. García-Martínez A.M., Díaz A., Tejada M., Bautista J., Rodríguez B., Santa María C., Revilla E., Parrado J., 2010. Enzymatic production of an organic soil biostimulant from wheat-condensed distiller solubles: Effects on soil biochemistry and biodiversity. Process Biochem. 45(7), 1127–1133. https://doi.org/10.1016/j.procbio.2010.04.005 DOI: https://doi.org/10.1016/j.procbio.2010.04.005
  28. Graziani G., Ritieni A., Cirillo A., Cice D., Di Vaio C., 2020. Effects of biostimulants on Annurca fruit quality and potential nutraceutical compounds at harvest and during storage. Plants 9, 775. https://doi.org/10.3390/plants9060775 DOI: https://doi.org/10.3390/plants9060775
  29. Hasanuzzaman M., Parvin K., Bardhan K., Nahar K., Anee T.I., Masud A.A.C., 2021. Fotopoulos V. Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiot-ic stress. Cells 10(10), 2537. https://doi.org/10.3390/cells10102537 DOI: https://doi.org/10.3390/cells10102537
  30. Hellequin E., Monard C., Chorin M. Le bris N., Daburon V., Klarzynski O., Binet F., 2020. Re-sponses of active soil microorganisms facing to a soil biostimulant input compared to plant leg-acy effects. Sci. Rep. 10. https://doi.org/10.1038/s41598-020-70695-7 DOI: https://doi.org/10.1038/s41598-020-70695-7
  31. Jannin L., Arkoun M., Ourry A., Lainé P., Goux D., Garnica M., Fuentes M., Francisco S.S., Bai-gorri R., Cruz F., Houdusse F., García-Mina J., Yvin J., Etienne P., 2012. Microarray analysis of humic acid effects on Brassica napus growth: Involvement of N, C and S metabolisms. Plant Soil 359, 297–319. https://doi.org/10.1007/s11104-012-1191-x DOI: https://doi.org/10.1007/s11104-012-1191-x
  32. du Jardin P., 2015. Plant biostimulants: Definition, concept, main categories and regulation. Hortic. Sci. 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021 DOI: https://doi.org/10.1016/j.scienta.2015.09.021
  33. Khan A.S., Ahmad B., Jaskani M.J., Ahmad R., Malik A.U., 2012. Foliar application of mixture of amino acids and seaweed (Ascophylum nodosum) extract improve growth and physicochemical properties of grapes. Int. J. Agric. Biol. 14(3), 383–388. http://www.fspublishers.org/published_papers/73501_..pdf [access: 8.04.2023].
  34. Khattab M.M., Shaban A.E.A., Hassan A.E., 2016. Impact of foliar application of calcium, boron and amino acids on fruit set and yield of ewais and fagry kelan mango cultivars. J. Ornam. Hor-tic. 8(2), 119–124. https://doi.org/10.5829/idosi.jhsop.2016.8.2.1179
  35. Kumaraswamy R.V., Kumari S., Choudhary R.C., Sharma S.S., Pal A., Raliya R., Biswas P., Sa-haran V., 2019. Salicylic acid functionalized chitosan nanoparticle: A sustainable biostimulant for plant. Int. J. Biol. Macromol. 123, 59–69. https://doi.org/10.1016/j.ijbiomac.2018.10.202 DOI: https://doi.org/10.1016/j.ijbiomac.2018.10.202
  36. La Spada F., Aloi F., Coniglione M., Pane A., Cacciola S.O., 2021. Natural Biostimulants elicit plant immune system in an integrated management strategy of the postharvest green mold of or-ange fruits incited by Penicillium digitatum. Front. Plant Sci. 12. https://doi.org/10.3389/fpls.2021.684722 DOI: https://doi.org/10.3389/fpls.2021.684722
  37. Lee S., Yoon J.Y., Jung, H.I., Lee D.J., Shin D.Y., Hyun K.H., Kuk Y.I., 2012. Ameliorative ef-fects of squash (Cucurbita moschata Duchesne ex Poiret) leaf extracts on oxidative stress. Plant Growth Regul. 67, 9–17. https://doi.org/10.1007/s10725-011-9655-1 DOI: https://doi.org/10.1007/s10725-011-9655-1
  38. Ma Y., Freitas H., Celeste D.M., 2022. Strategies and prospects for biostimulants to alleviate abiotic stress in plants. Front. Plant Sci. 13. https://doi.org/10.3389/fpls.2022.1024243 DOI: https://doi.org/10.3389/fpls.2022.1024243
  39. Machado L.P., Matsumoto S.T., Jamal C.M., da Silva M.B., Centeno D.C., Colepicolo N.P., de Carvalho L.R., Yokoya N.S., 2014. Chemical analysis and toxicity of seaweed extracts with in-hibitory activity against tropical fruit anthracnose fungi. J. Sci. Food Agric. 94(9), 1739–1744. https://doi.org/10.1002/jsfa.6483. DOI: https://doi.org/10.1002/jsfa.6483
  40. Maciejewski T., Szukała J., Jarosz A., 2007. Wpływ biostymulatora Asahi SL i Atonik SL na cechy jakościowe bulw ziemniaków [Influence of biostymulator Asahi SL i Atonik SL on qualitative tubers of potatoes]. J. Res. Appl. Agric. Eng. 52(3), 109–112 [in Polish].
  41. Mancuso S., Azzarello E., Mugnai S., Briand X., 2006. Marine bioactive substances (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Adv. Hortic. Sci. 20, 156–161. https://doi.org/10.1400/53262
  42. Marfà O., Cáceres R., Polo J., Ródenas J., 2009. Animal protein hydrolysate as a biostimulant for transplanted strawberry plants subjected to cold stress. Acta Hortic. 842, 315–318. https://doi.org/10.17660/ActaHortic.2009.842.57 DOI: https://doi.org/10.17660/ActaHortic.2009.842.57
  43. Marjańska‐Cichoń B., Sapieha‐Waszkiewicz A., 2012. The effect of Goëmar BM 86 on the yield of three apple varieties, and selected qualitative characteristics of Apple. Prog. Plant Prot. 52(4). http://dx.doi.org/10.14199/ppp-2012-205
  44. Morris M., Kelly V.A., Kopicki R.J., Byerlle D., 2007. Fertilizer use in African agriculture, lessons learned and good practice guidelines. Directions in Development, Agriculture and Rural Devel-opment. World Bank, Washington, DC. http://hdl.handle.net/10986/6650 DOI: https://doi.org/10.1596/978-0-8213-6880-0
  45. Moussa A., Passera A., Torcoli S., Serina F., Quaglino F., Mori N., 2021. Evaluation of biostimu-lant effectiveness in grapevine “bois noir” management. 8. convegno Incontro Nazionale sui Fitoplasmi e le Malattie da Fitoplasmi tenutosi a Catania nel 2021. https://hdl.handle.net/2434/884290
  46. Mueller L., Schindler U., Mirschel W., Shepherd T.G., Ball B.C., Helming K., Rogasik J., Eulen-stein F., Wiggering H., 2010. Assessing the productivity function of soils. A review. Agron. Sustain. Dev. 30, 601–614. https://doi.org/10.1051/agro/2009057 DOI: https://doi.org/10.1051/agro/2009057
  47. Nabti E., Jha B., Hartmann A., 2017. Impact of seaweeds on agricultural crop production as bioferti-lizer. Int. J. Environ. Sci. Technol. 14, 1119–1134. https://doi.org/10.1007/s13762-016-1202-1 DOI: https://doi.org/10.1007/s13762-016-1202-1
  48. Nascimento T., Rego C., Oliveira H., 2007. Potential use of chitosan in the control of grapevine trunk diseases. Phytopathol. Mediterr. 46, 218–224. https://doi.org/10.14601/Phytopathol_Mediterr-2156
  49. Navarro-León E., López-Moreno F.J., Borda E., Marín C., Sierras N., Blasco B., Ruiz J.M., 2022. Effect of l-amino acid-based biostimulants on nitrogen use efficiency (NUE) in lettuce plants. J. Sci. Food Agric. 102(15), 7098–7106. https://doi.org/10.1002/jsfa.12071 DOI: https://doi.org/10.1002/jsfa.12071
  50. Pankratz T.M., 2000. Environmental engineering dictionary and direktory. CRC Press, FL, Boca Raton. https://doi.org/10.1201/9781420032536 DOI: https://doi.org/10.1201/9781420032536
  51. Povero G., Mejia J.F., Di Tommaso D., Piaggesi A., Warrior P., 2016. A systematic approach to discover and characterize natural plant biostimulants. Front. Plant Sci. 7. https://doi.org/10.3389/fpls.2016.00435 DOI: https://doi.org/10.3389/fpls.2016.00435
  52. Pylak M., Oszust K., Frąc M., 2019. Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Rev. Environ. Sci. Bio-technol. 18, 597–616. https://doi.org/10.1007/s11157-019-09500-5 DOI: https://doi.org/10.1007/s11157-019-09500-5
  53. Romanazzi G., Nigro F., Ippolito A., Di Venere D., Salerno M., 2002. Effects of pre and posthar-vest chitosan treatments to control storage grey mould of table grapes. J. Food. Sci. 67, 1862–1867. https://doi.org/10.1111/j.1365-2621.2002.tb08737.x DOI: https://doi.org/10.1111/j.1365-2621.2002.tb08737.x
  54. Rouphael Y., Colla G., 2018. Synergistic biostimulatory action: designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 9, 1655. https://doi.org/10.3389/fpls.2018.01655 DOI: https://doi.org/10.3389/fpls.2018.01655
  55. Samuels L.J., Setati M.E., Blancquaert E.H., 2022. Towards a better understanding of the potential benefits of seaweed based biostimulants in Vitis vinifera L. cultivars. Plants 11, 348. https://doi.org/10.3390/plants11030348 DOI: https://doi.org/10.3390/plants11030348
  56. Sharma H.S.S., Fleming C., Selby C., Rao J.R., Martin T., 2014. Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 26, 465–490. https://doi.org/10.1007/s10811-013-0101-9 DOI: https://doi.org/10.1007/s10811-013-0101-9
  57. Shekhar S.H.S. G., Lyons C., McRoberts D., McCall E., Carmichael F., Andrews F., McCormack R., 2012. Brown seaweed species from Strangford Lough: compositional analyses of seaweed species and biostimulant formulations by rapid instrumental methods. J. Appl. Phycol. 24, 1141–1157. https://doi.org/10.1007/s10811-011-9744-6 DOI: https://doi.org/10.1007/s10811-011-9744-6
  58. Shukla P.S., Mantin E.G., Adil M., Bajpai S., Critchley A.T., Prithiviraj B., 2019. Ascophyllum nodosum-based biostimulants: sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front. Plant Sci. 10. https://doi.org/10.3389/fpls.2019.00655 DOI: https://doi.org/10.3389/fpls.2019.00655
  59. Soppelsa S., Kelderer M., Casera C., Bassi M., Robatscher P., Matteazzi A., Andreotti C., 2019. Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy 9, 483. https://doi.org/10.3390/agronomy9090483 DOI: https://doi.org/10.3390/agronomy9090483
  60. Spann T.M., Little H.A., 2011. Applications of a Commercial extract of the brown seaweed Ascophyllum nodosum increases drought tolerance in container-grown ‘Hamlin’ sweet orange nursery trees. Hortic. Sci. 46(4), 577–582. https://doi.org/10.21273/HORTSCI.46.4.577 DOI: https://doi.org/10.21273/HORTSCI.46.4.577
  61. Spinelli F., Fiori G., Noferini M., Sprocatti M., Costa G., 2010. A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Sci. Hortic. 125(3), 263–269. https://doi.org/10.1016/j.scienta.2010.03.011 DOI: https://doi.org/10.1016/j.scienta.2010.03.011
  62. Świerczyński S., Antonowicz A., 2021. The effects of reduced mineral fertilisation combined with the foliar application of biostimulants and fertilisers on the nutrition of maiden apple trees and the contents of soil nutrients. Agronomy 11, 2438. https://doi.org/10.3390/agronomy11122438 DOI: https://doi.org/10.3390/agronomy11122438
  63. Świerczyński S., Antonowicz A., Bykowska J., 2021. The effect of the foliar application of biostim-ulants and fertilisers on the growth and physiological parameters of maiden apple trees cultivat-ed with limited mineral fertilisation. Agronomy 11(6), 1216. https://doi.org/10.3390/agronomy11061216 DOI: https://doi.org/10.3390/agronomy11061216
  64. Tarantino A., Lops F., Disciglio G., Lopriore G., 2018. Effects of plant biostimulants on fruit set, growth, yield and fruit quality attributes of ‘Orange rubis®’ apricot (Prunus armeniaca L.) cul-tivar in two consecutive years. Hortic. Sci. 239, 26–34. https://doi.org/10.1016/ DOI: https://doi.org/10.1016/j.scienta.2018.04.055
  65. j.scienta.2018.04.055 DOI: https://doi.org/10.1088/1475-7516/2018/04/055
  66. Taskos D., Stamatiadis S., Yvin J., Jamois F., 2019. Effects of an Ascophyllum nodosum (L.) Le Jol. extract on grapevine yield and berry composition of a Merlot vineyard. Hortic. Sci. 250, 27–32. https://doi.org/10.1016/j.scienta.2019.02.030 DOI: https://doi.org/10.1016/j.scienta.2019.02.030
  67. Tavarini S., Passera B., Martini A., Avio L., Sbrana C., Giovannetti M., Angelini L.G., 2018. Plant growth, steviol glycosides and nutrient uptake as affected by arbuscular mycorrhizal fungi and phosphorous fertilization in Stevia rebaudiana Bert. Ind. Crops Prod. 111, 899–907. https://doi.org/10.1016/j.indcrop.2017.10.055 DOI: https://doi.org/10.1016/j.indcrop.2017.10.055
  68. Turan M., Köse C., 2006. Seaweed extracts improve copper uptake of grapevine, Acta Agric. Scand. – B Soil Plant Sci. 54(4), 213–220. https://doi.org/10.1080/09064710410030311 DOI: https://doi.org/10.1080/09064710410030311
  69. Ugolini L., Cinti S., Righetti L., Stefan A., Matteo R., D’Avino L., Lazzeri L., 2015. Production of an enzymatic protein hydrolyzate from defatted sunflower seed meal for potential application as
  70. a plant biostimulant. Ind. Crops Prod. 75(A), 15–23. https://doi.org/10.1016/j.indcrop.2014.11.026 DOI: https://doi.org/10.1016/j.indcrop.2014.11.026
  71. Van Oosten M.J., Pepe O., De Pascale S., Silletti S., Maggio A., 2017. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 4, 5. https://doi.org/10.1186/s40538-017-0089-5 DOI: https://doi.org/10.1186/s40538-017-0089-5
  72. Yakhin O.I., Lubyanov A.A., Yakhin I.A., Brown P.H., 2017. Biostimulants in plant science: a global perspective. Front. Plant Sci. 7. https://doi.org/10.3389/fpls.2016.02049 DOI: https://doi.org/10.3389/fpls.2016.02049
  73. Zulfiqar F., Casadesús A., Brockman H., Munné-Bosch S., 2020. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf ex-tracts. Plant Sci. 295. https://doi.org/10.1016/j.plantsci.2019.110194 DOI: https://doi.org/10.1016/j.plantsci.2019.110194

Downloads

Download data is not yet available.

Podobne artykuły

<< < 58 59 60 61 62 63 64 65 66 67 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.