Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 78 Nr 4 (2023)

Artykuły

Biodiversity assessment of segetal flora, earthworms and terrestrial invertebrates in various agricultural production systems and crops

DOI: https://doi.org/10.24326/as.2023.5302
Przesłane: 20 listopada 2023
Opublikowane: 18-04-2024

Abstrakt

The functioning of societies depends on a number of goods and services provided by the natural environment. Knowledge about the benefits that humans derive from it is an important issue in the era of current environmental and climate changes. Agricultural systems and management methods (e.g. tillage, weed and pest control, fertilization, field consolidation, crop  specialization and monoculture) are important for biodiversity, the presence of which is of great importance for people and the environment. The aim of this study was to assess bioenvironmental indicators such as weed flora, earthworms and terrestrial invertebrates biomass, in selected crops in an organic, integrated and conventional farming systems in southern Poland.

The results showed the highest biodiversity weeds, earthworms, and terrestrial invertebrates in crops grown in the organic system in comparison to the conventional or sustainable ones, where chemical herbicides were applied. Species diversity of weeds was, on average, twice as high in the organic system (21 species) compared to the integrated and conventional systems (10–11 species). In the organic system, the highest number of weeds (average 71 pcs m–2) accompanied spring wheat and the lowest number of weeds was observed in legume-grass mixture in the first year of use (average 28 pcs m2). The highest biomass of earthworms in the soil was estimated under winter wheat and legume-grass mixtures. This indicator was half as much in the soil under plants grown in integrated and conventional systems. Terrestrial invertebrates were also most abundant in crops grown in the organic system, indicating that this agricultural production system is conducive to maintaining high biodiversity in agroecosystems. For winter wheat cultivated in the conventional and integrated systems, the invertebrate richness index was 2.5–3 times lower than in the organic system.

Bibliografia

  1. Azeez G., 2000. The biodiversity benefits of organic farming. Soil Association Policy Report. Bristol. https://doi.org/10.1079/9780851997407.0077 DOI: https://doi.org/10.1079/9780851997407.0077
  2. Bavec M., Bavec F., 2015. Impact of organic farming on biodiversity. In: Y.H. Lo, J.A. Blanco, S. Roy (eds), Biodiversity in ecosystems-linking structure and function, 185–202. https://doi.org/10.5772/58974 DOI: https://doi.org/10.5772/58974
  3. Bengtsson J., Ahnström J., Weibull A.C., 2005. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. J. Appl. Ecol. 42(2), 261–269. http://dx.doi.org/10.1111/j.1365-2664.2005.01005.x DOI: https://doi.org/10.1111/j.1365-2664.2005.01005.x
  4. Benton T.G., Bryant D.M., Cole L., Crick H.Q.P., 2002. Linking agricultural practice to insect and bird populations: a historical study over three decades. J. Appl. Ecol. 39(4), 673–687. http://dx.doi.org/10.1046/j.1365-2664.2002.00745.x DOI: https://doi.org/10.1046/j.1365-2664.2002.00745.x
  5. Benton T.G., Vickery J.A., Wilson J.D., 2003. Farmland biodiversity: is habitat heterogeneity the key?. Trends Ecol. Evol. 18(4), 182–188. http://dx.doi.org/10.1016/S0169-5347(03)00011-9 DOI: https://doi.org/10.1016/S0169-5347(03)00011-9
  6. Briones M.J.I., Schmidt O., 2017. Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. – Glob. Chang. Biol. 23(10), 4396–4419. http://dx.doi.org/10.1111/gcb.13744 DOI: https://doi.org/10.1111/gcb.13744
  7. Buhler D.D., 2002. Challenges and opportunities for integrated weed management. Weed Sci. 50(3), 273–280. https://doi.org/10.1614/0043-1745(2002)050[0273:AIAAOF]2.0.CO;2 DOI: https://doi.org/10.1614/0043-1745(2002)050[0273:AIAAOF]2.0.CO;2
  8. Cardina J., Herms C.P., Doohan D.J., 2002. Crop rotation and tillage system effects on weed seedbanks. Weed Sci. 50(4), 448–460. http://dx.doi.org/10.1614/0043-1745(2002)050%5B0448:CRATSE%5D2.0.CO;2 DOI: https://doi.org/10.1614/0043-1745(2002)050[0448:CRATSE]2.0.CO;2
  9. Coleman D.C., Crossley Jr. D.A., Hendrix P.F., 2004. Fundamentals of Soil Ecology, 2nd ed. Elsevier Academic Press, San Diego, CA. https://doi.org/10.1016/B978-0-12-179726-3.X5000-X DOI: https://doi.org/10.1016/B978-0-12-179726-3.X5000-X
  10. Coonan E.C., Kirkby C.A., Kirkegaard J.A., Amidy M.R., Strong C.L., Richardson A.E., 2020. Microorganisms and nutrient stoichiometry as mediators of soil organic matter dynamics. Nutr. Cycl. Agroecosyst. 117, 273–298. https://doi.org/10.1007/s10705-020-10076-8 DOI: https://doi.org/10.1007/s10705-020-10076-8
  11. CropLife International, 2004. The role of agriculture technologies & biodiversity conservation a collection of case studies. Draft publication produced for the IUCN World Conservation Congress, Bangkok, Thailand, 17–25 November 2004, Crop Life International, Belgium, pp. 11. https://croplife.org/wp-content/uploads/pdf_files/The-Role-of-Agricultural-Technologies-and-Biodiversity-Conservation.pdf [date of access: 20.12.2023].
  12. Curry J.P., Byrne D., Schmidt O., 2002. Intensive cultivation can drastically reduce earthworm populations in arable land. Eur. J. Soil Biol. 38(2), 127–130. https://doi.org/10.1016/S1164-5563(02)01132-9 DOI: https://doi.org/10.1016/S1164-5563(02)01132-9
  13. Das T.K., Sen S., Raj R., Ghosh S., Behera B., Roy A., 2021. Economic threshold concept for weed management in crops: Usefulness and limitation. Indian J. Weed Sci. 53(1), 1–13. http://dx.doi.org/10.5958/0974-8164.2021.00001.0 DOI: https://doi.org/10.5958/0974-8164.2021.00001.0
  14. Deese S.D., 2010. Economic analysis: weeding techniques for organic farms. California Polytechnic State 286 University. Faculty of the Agribusiness Department. In Partial Fulfilment of the Requirement for the Degree 287 Bachelor of Science, pp. 25.
  15. Dobrzański A., Adamczewski K., 2009. The influence of weed control on agrophytocenosis biodiversity. Progr. Plant Protec. 49(3), 982–995.
  16. Doğan M.N., Ünay A., Boz Ö., Albay F., 2004. Determination of optimum weed control timing in maize (Zea mays L.). Turk. J. Agric. For. 28(5), 349–354. https://journals.tubitak.gov.tr/cgi/viewcontent.cgi?article=2162&context=agriculture [date of access: 20.12.2023].
  17. Donald P.F., 2004. Biodiversity impacts of some agricultural commodity production systems. Conserv. Biol. 18(1), 17–37. http://dx.doi.org/10.1111/j.1523-1739.2004.01803.x DOI: https://doi.org/10.1111/j.1523-1739.2004.01803.x
  18. Eisenhauer N., Milcu A., Sabais A.C.W., Bessler H., Weigelt A., Engels C., Scheu S., 2009. Plant community impacts on the structure of earthworm communities depend on season and change with time. Soil Biol. Biochem. 41(12), 2430–2443. http://dx.doi.org/10.1016/j.soilbio.2009.09.001 DOI: https://doi.org/10.1016/j.soilbio.2009.09.001
  19. Eisenhauer N., Hines J., 2021. Invertebrate biodiversity and conservation. Current Biol. 31(19), R1214–R1218. https://doi.org/10.1016/j.cub.2021.06.058 DOI: https://doi.org/10.1016/j.cub.2021.06.058
  20. Ewald J.A., Aebischer N.J., 1999. Pesticide use, avian food resources and bird densities in Sussex. Joint Nature Conservation Report 296, ss. 71.
  21. FAO, 2015. World reference base for soil resources 2014. international soil classification system for naming soils and creating legends for soil maps. Update 2015. World Soil Resources Reports 106.
  22. Filser J., Dette A., Fromm H., Lang A.,. Munch J.C, Winter K., Beese F., 1999. Reactions of soil organisms in site-specific management. The first long-term study at the landscape scale. Ecosystem 28, 139–147.
  23. Flohre A., Rudnick M., Traser G., Tscharntke T., Eggers T., 2011. Does soil biota benefit from organic farming in complex vs. simple landscape?. Agric. Ecosys. Envir. 141(1–2), 210–214. http://dx.doi.org/10.1016/j.agee.2011.02.032 DOI: https://doi.org/10.1016/j.agee.2011.02.032
  24. Foissner W., 1992. Comparative studies on soil life in ecofarmed and conventionally farmed fields and grasslands of Austria. Agric. Ecosys. Envir. 40(1–4), 207–218. http://dx.doi.org/10.1016/0167-8809(92)90093-Q DOI: https://doi.org/10.1016/0167-8809(92)90093-Q
  25. Hole D.G., Perkins A.J., Wilson J.D., Alexander I.H., Grice F., Evans A.D., 2005. Does organic farming benefit biodiversity? Biol. Conserv. 122(1), 113–130. http://dx.doi.org/10.1016/j.biocon.2004.07.018 DOI: https://doi.org/10.1016/j.biocon.2004.07.018
  26. Hyvönen T., Ketoja E., Salonen J., Jalli H., Tiainen J., 2003. Weed species diversity and community composition in organic and conventional cropping of spring cereals. Agric. Ecosyst. Environ. 97(1–3), 131–149. http://dx.doi.org/10.1016/S0167-8809(03)00117-8 DOI: https://doi.org/10.1016/S0167-8809(03)00117-8
  27. Johnston J.L., Fanzo J.C., Cogill B., 2014. Understanding sustainable diets: a descriptive analysis of the determinants and processes that influence diets and their impact on health, food security, and environmental sustainability Adv. Nutr. 5(4), 418–429, https://doi.org/10.3945/an.113.005553 DOI: https://doi.org/10.3945/an.113.005553
  28. Jones R.E., Medd R.W., 2000. Economic thresholds and the case for longer term approaches to population management of weeds. Weed Technol. 14(2), 337–350. DOI: https://doi.org/10.1614/0890-037X(2000)014[0337:ETATCF]2.0.CO;2
  29. Jurys A., Feizienė D., 2021. The effect of specific soil microorganisms on soil quality parameters and organic matter content for cereal production. Plants 10(10), 2000. https://doi.org/10.3390/plants10102000 DOI: https://doi.org/10.3390/plants10102000
  30. Légère A., Samson N., 2004. Tillage and weed management effects on weeds in barley red clover cropping systems. Weed Sci. 52(5), 881–885. DOI: https://doi.org/10.1614/WS-04-011R
  31. Mace G.M., Norris K., Fitter A.H., 2012. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27(1), 19–26. http://dx.doi.org/10.1016/j.tree.2011.08.006 DOI: https://doi.org/10.1016/j.tree.2011.08.006
  32. Marshall E.J.P., Brown V.K., Boatman N.D., Lutman P.J.W., Squire G.R., Ward L.K., 2003. The role of weeds in supporting biological diversity within crop fields. Weed Res. 43(2), 77–89. http://dx.doi.org/10.1046/j.1365-3180.2003.00326.x DOI: https://doi.org/10.1046/j.1365-3180.2003.00326.x
  33. Menalled F.D., Gross K.L., Hammond M., 2001. Weed aboveground and seedbank community responses to agricultural management systems. Ecol. Applic. 11(6), 1586–1601. http://dx.doi.org/10.1890/1051-0761(2001)011%5B1586:WAASCR%5D2.0.CO;2 DOI: https://doi.org/10.1890/1051-0761(2001)011[1586:WAASCR]2.0.CO;2
  34. Nuutinen V., Haukka, J., 1990. Conventional and organic cropping systems at Suitia. VII Earthworms. J. Agri. Sci. Finland 62(4), 357–367. https://doi.org/10.23986/afsci.72910 DOI: https://doi.org/10.23986/afsci.72910
  35. Paoletti M.G., 1999. The role of earthworms for assessment of sustainability and as bioindicators. Agric. Ecosys. Envir. 74(1), 137–155. http://dx.doi.org/10.1016/S0167-8809(99)00034-1 DOI: https://doi.org/10.1016/S0167-8809(99)00034-1
  36. Pfiffner L., Luka H., 2007. Earthworm populations in two low-input cereal farming systems. Appl. Soil Ecol. 37(3), 184–191. http://dx.doi.org/10.1016/j.apsoil.2007.06.005 DOI: https://doi.org/10.1016/j.apsoil.2007.06.005
  37. Pfiffner L., Stoeckli S., 2023. Agriculture and biodiversity. Impacts of different farming systems on biodiversity. Factsheet 1548, 1–16. https://doi.org/10.5281/zenodo.7743951.
  38. Phillips H. R.P., Guerra C.A., Bartz M.L.C., Briones M.J.I., Brown G., et al., 2019. Global distribution of earthworm diversity. Science 366(6464), 480–485. https://www.doi.org/10.1126/science.aax4851
  39. Purtauf T., Roschewitz I., Dauber J., Thies C., Tscharntke T., Wolters V., 2005. Landscape context of organic and conventional farms: Influences on carabid beetle diversity. Agric. Ecos. Envir. 108(2), 165–174. https://doi.org/10.1016/j.agee.2005.01.005 DOI: https://doi.org/10.1016/j.agee.2005.01.005
  40. Rasmussen I.A., Askegaard M., Olesen J.E., Kristensen K., 2006. Effects on weeds of management in newly converted organic crop rotations in Denmark. Agric. Ecosys. Envir. 113(1–4), 184–195. http://dx.doi.org/10.1016/j.agee.2005.09.007 DOI: https://doi.org/10.1016/j.agee.2005.09.007
  41. Rasmussen L.V., Rasmussen B., Coolsaet A., Martin O., Mertz U., Pascual E., Corbera N., Dawson J.A., Fisher P., Franks C.M., 2018. Social-organic outcomes of agricultural intensification. Nat. Sustain. 1, 275–282. https://doi.org/10.1038/s41893-018-0070-8 DOI: https://doi.org/10.1038/s41893-018-0070-8
  42. Rockström J., Williams J., Daily G., Noble A., Matthews N., Gordon L., Wetterstrand H., DeClerck F., Shah M., Steduto P., de Fraiture C., Hatibu N., Unver O., Bird J., Sibanda L., Smith J., 2017. Sustainable intensification of agriculture for human prosperity and global sustainability Ambio, 46, 4–17. https://doi.org/10.1007/s13280-016-0793-6 DOI: https://doi.org/10.1007/s13280-016-0793-6
  43. Roschewitz I., Gabriel D., Tscharntke T., Thies C., 2005. The effects of landscape complexity on arable weed species diversity in organic and conventional farming. J. Appl. Ecol. 42, 873–882. http://dx.doi.org/10.1111/j.1365-2664.2005.01072.x DOI: https://doi.org/10.1111/j.1365-2664.2005.01072.x
  44. Rosin Z.M., Takacs V., Báldi A., Banaszak-Cibicka W., Dajdok Z., Dolata P.T., Kwieciński Z., Łangowska A., Moroń D., Skórka P., Tobółka M., Tryjanowski P., Wuczyński A., 2011. Ecosystem services as an efficient tool of nature conservation: A view from the Polish farmland. Chrońmy Przyr. Ojcz. 67(1), 3–20.
  45. Sanyal D., Bhowmik P.C., Anderson R.L, Shresta A., 2008. Revisiting the perspective and progress of integrated weed management. Weed Sci. 56, 161–167. http://dx.doi.org/10.1614/WS-07-108.1 DOI: https://doi.org/10.1614/WS-07-108.1
  46. Schloter M., Nannipieri P., Sørensen S.J., van Elsas. D.J., 2018. Microbial indicators for soil quality. Biol. Fertil. Soils. 54, 1–10. https://doi.org/10.1007/s00374-017-1248-3. DOI: https://doi.org/10.1007/s00374-017-1248-3
  47. Shah P.A., Brooks D.R., Ashby J.E., Perry J.N., Woiwood I.P., 2003. Diversity and abundance of the coleopteran fauna from organic and conventional management systems in southern England. Agricul. Forest Entomol. 5, 51–60. http://dx.doi.org/10.1046/j.1461-9563.2003.00162.x DOI: https://doi.org/10.1046/j.1461-9563.2003.00162.x
  48. Singh S., Singh J., Vig A.P., 2016. Effect of abiotic factors on the distribution of earthworms in different land use patterns. J. Basic Appl. Zool. 74, 41–50. http://dx.doi.org/10.1016/j.jobaz.2016.06.001 DOI: https://doi.org/10.1016/j.jobaz.2016.06.001
  49. Smith J.G., 1976. Influence of crop background on aphids and other phytophagus insects on brussel sprouts. Ann. Appl. Biol. 83, 1–13. https://doi.org/10.1111/j.1744-7348.1976.tb01689.x DOI: https://doi.org/10.1111/j.1744-7348.1976.tb01689.x
  50. Stoate C., Boatman N.D., Borralho R.J., Carvalho C.R., de Snoo, G.R., Eden P., 2001. Organic impacts of arable intensification in Europe. J. Environ. Manag. 63, 337–365. http://dx.doi.org/10.1006/jema.2001.0473 DOI: https://doi.org/10.1006/jema.2001.0473
  51. Szyszko J. 1985. Pułapka STN do odłowów Carabidae [STN trap for catching Carabidae]. Prace Kom. Nauk. Pol. Tow. Glebozn., 91, 34–41.
  52. Tuck S.L. Winqvist C., Mota F., Ahnstrom J., Turnbull L.A., Bengtsson J., 2014. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis’, J. Appl. Ecol. 51(3), 746–755. https://doi.org/10.1111/1365-2664.12219 DOI: https://doi.org/10.1111/1365-2664.12219
  53. Twardowski J.P., Pastuszko K., 2008. Field margins in winter wheat agrocenosis as reservoirs of beneficial ground beetles (Col., Carabidae) J. Res. Appl. Agri. Engin. 53(4), 123–127.
  54. Urmler U., 2010. Changes in earthworm populations during conversion from conventional to organic farming. Agric. Ecosyst. Environ. 135(3), 194–198. http://dx.doi.org/10.1016/j.agee.2009.09.008 DOI: https://doi.org/10.1016/j.agee.2009.09.008
  55. Varchola J. M., Dunn J.P., 1999. Changes in ground beetle (Coleoptera: Carabidae) assemblages in farming systems bordered by complex or simple roadside vegetation. Agric. Ecos. Envir. 73, 41–49. https://doi.org/10.1016/S0167-8809(99)00009-2 DOI: https://doi.org/10.1016/S0167-8809(99)00009-2
  56. Visser S., Parkinson D., 1992. Soil biological criteria as indicators of soil quality: Soil microorganisms. Am. J. Agric. Econ. 7(1/2), 33–37. DOI: https://doi.org/10.1017/S0889189300004434
  57. Westernacher-Dotzler E., 1992. Earthworms in arable land taken out of cultivation. Soil Biol. Biochem. 24, 1673–1675. http://dx.doi.org/10.1016/0038-0717(92)90168-W DOI: https://doi.org/10.1016/0038-0717(92)90168-W
  58. Zhang Y., Zhou W., Luo D., 2023. The relationship research between biodiversity conservation and economic growth: From multi-level attempts to key development. Sustainability 15(4), 3107. https://doi.org/10.3390/su15043107 DOI: https://doi.org/10.3390/su15043107
  59. Zoschke A., Quadranti M., 2002. Integrated weed management: quo vadis? Weed Biol. Manag. 2, 1–10. http://dx.doi.org/10.1046/j.1445-6664.2002.00039.x DOI: https://doi.org/10.1046/j.1445-6664.2002.00039.x

Downloads

Download data is not yet available.