Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 79 Nr 2 (2024)

Artykuły

Morphological and agronomic features of potato cv. Gardena highly resistant to Phytophthora infestans (Mont.) de Bary depending on the nitrogen dose

DOI: https://doi.org/10.24326/as.2024.5318
Przesłane: 8 grudnia 2023
Opublikowane: 02-12-2024

Abstrakt

In a 2-year field study, the impact of mineral nitrogen fertilization on the productivity of a new potato cultivar, promising due to the highest resistance to potato late blight among the registered ones, was compared to the proven, widely cultivated Denar cultivar. The study determined morphological features (size and weight of organs), physiological indicators (cover of soil by leaves – LAI. leaf greenness – SPAD) of potato plants during the growing season, yield and quality characteristics of tubers and optimal level of nitrogen fertilization. Tuber quality was assessed based on the share of tuber size and external defects in the yield structure. Optimal mineral nitrogen fertilization was determined based on the relationship between the increase in tuber yield and the increasing dose of this ingredient. The research took into account two factors: nitrogen dose (0, 50 kg‧ha–1, 100 kg‧ha–1, 150 kg‧ha1) and cultivar (Gardena and Denar). The increase in the dose of mineral nitrogen fertilization to 150 kg‧ha–1 resulted in a significant increase in plant height, the weight of the root system, stems, leaves and the share of large tubers in the yield. It was shown that the Gardena cultivar was characterized by greater requirements for mineral nitrogen fertilization, low effectiveness of its use, a higher share of large tubers (diameter above 60 mm) and lower tuber yield than the Denar cultivar. In a year characterized by excess rainfall, plants produced a greater mass of the root system and the mass of the above-ground part, and in a year with an amount of rainfall close to optimal the final yield of tubers and the share of large tubers in the yield were higher.

Bibliografia

  1. Badr M.A., El-Tohamy W.A., Zaghloul A.M., 2012. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agric. Water Manag. 110, 9–15. https://doi.org/10.1016/J.AGWAT.2012.03.008
  2. Baranowska A., Zarzecka K., Mystkowska I., Gugała M., 2017. Opłacalność uprawy ziemniaków jadalnych odmiany Bellarosa [Profitability of edible potatoes cultivation Bellarosa]. Rocz. Na-uk. Stow. Ekon. Rol. Agrobiz. 19(5), 15–19 [in Polish]. https://doi.org/10.5604/01.3001.0010.6194
  3. Bărăscu N., Duda M.M., Olteanu G., 2016. Study of dynamics SPAD and NDVI values of potato plants according to the differentiated fertilization. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca, Agric. 73(1), 6–14. https://doi.org/10.15835/buasvmcn-agr: 12003
  4. Boguszewska-Mańkowska D., Zarzyńska K., Wasilewska-Nascimento B., 2022. Potato (Solanum tuberosum L.) plant shoot and root changes under abiotic stresses – yield response. Plants 11, 3568. https://doi.org/10.3390/ plants11243568
  5. Clément C.C., Cambouris A.N., Ziadi N., Zebarth B.J., Karam A., 2021. Potato yield response and seasonal nitrate leaching as influenced by nitrogen management. Agronomy 11(10), 2055. https://doi.org/10.3390/agronomy11102055
  6. Cohan J.P., Hannon C., Houilliez C., Gravoueille J.M., Geille A., Lampaert E., Laurent F., 2018. Effects of potato cultivar on the components of nitrogen use efficiency. Potato Res. 61, 231–246. https://doi.org/10.1007/s11540-018-9371-6
  7. Dahal K., Li X.Q., Tai H., Creelman A., Bizimungu B., 2019. Improving potato stress tolerance and tuber yield under a climate change scenario–a current overview. Front Plant Sci. 10, 563. https://doi.org/10.3389/fpls.2019.00563
  8. Demirel U., Çaliskan S., Yavuz C., Tindas I., Polgar Z., Vaszily Z., Cernák I., Çaliskan M.E., 2017. Assessment of morphophysiological traits for selection of heat-tolerant potato genotypes. Turk. J. Agric. For. 41(3), 218–232. https://doi.org/10.3906/tar-1701-95
  9. Escuredo O., Seijso-Rodriguez A., Rodriguez-Flores M., Meno L., Seijso M., 2020. Changes in the morphological characteristics of potato plants attributed to seasonal variability. Agriculture 10(4), 95. https://doi.org/10.3390/agriculture10040095
  10. Fontes P.C.R., Braun H., Busato C., Cecon P.R., 2010. Economic optimum nitrogen fertilization rates and nitrogen fertilization rate effects on tuber characteristics of potato cultivars. Potato Res. 53, 167–179. https://doi.org/10.1007/s11540-010-9160-3
  11. Gianquinto G., Goffart J.P., Olivier M., Guarda G., Colauzzi M., Dalla Costa L., Delle Vedove G., Vos J., MacKerron D.K.L., 2004. The use of hand-held chlorophyll meters as a tool to assess the nitrogen status and to guide nitrogen fertilization of potato crop. Potato Res. 47, 35–80. https://doi.org/10.1007/BF02731970
  12. Giletto C.M., Echeverría H.E., 2015. Critical nitrogen dilution curve in processing potato cultivars. Am. J. Plant Sci. 6(19), 3144–3156. http://dx.doi.org/10.4236/ajps.2015.619306
  13. Hancock R.D., Morris W.L., Ducreux L.J.M., Morris J.A., Usman M., Verrall S.R., Fuller J., Simpson C.G., Zhang R., Hedley P.E., 2014. Physiological, biochemical and molecular re-sponses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant Cell Environ. 37(2), 439–450. https://doi.org/10.1111/pce.12168
  14. Hmelak Gorenjak A., Cencič A., 2013. Nitrate in vegetables and their impact on human health. A review. Acta Aliment. 42(2), 158–172. https://doi.org/10.1556/AAlim.42.2013.2.4
  15. Ierna A., Mauromicale G., 2019. Sustainable and profitable nitrogen fertilization management of potato. Agronomy 9(10), 582. https://doi.org/10.3390/agronomy9100582
  16. Kołodziejczyk M., 2014. Effect of nitrogen fertilization and microbial preparations on potato yield-ing. Plant Soil Environ. 60(8), 379–386. https://doi.org/10.17221/7565-PSE
  17. Kumar U., Chandra G., Raghav M., 2017. Nitrogen management in potato for maximum tuber yield, quality and environmental conservation. Vegetable Sci. 44(2), 43–418.
  18. Lombardo S., Pandino G., Mauromicale G., 2020. Optimizing nitrogen fertilization to improve qualitative performances and physiological and yield responses of potato (Solanum tuberosum L.). Agronomy 10(3), 352. https://doi.org/10.3390/agronomy10030352
  19. Lutomirska B., Jankowska J., 2012. The occurrence of misshaped tubers and tubers with cracks on the surface dependening on meteorological factors and cultivars. Biul. IHAR 266, 131–142 [in Polish].
  20. Maltas A., Dupuis B., Sinaj S., 2018. Yield and quality response of two potato cultivars to nitrogen fertilization. Potato Res. 61, 97–114. https://doi.org/10.1007/s11540-018-9361-8
  21. Mahgoub H., Eisa G., Youssef M., 2015. Molecular, biochemical and anatomical analysis of some potato (Solanum tuberosum L.) cultivars growing in Egypt. J. Genet. Eng. Biotechnol. 13(1), 39–49. https://doi.org/10.1016/j.jgeb.2014.11.004
  22. Muleta H.D, Aga M.C., 2019. Role of nitrogen on potato production: A review. J. Plant Sci. 7(2), 36–42. https://doi.org/10.11648/j.jps.20190702.11
  23. Pobereżny J., Wszelaczyńska E., Wichrowska D., Jaskulski D., 2015. Content of nitrates in potato tubers depending on the organic matter, soil fertilizer, cultivation. Chil. J. Agric. Res. 75(1), 42–49. http://dx.doi.org/10.4067/S0718-58392015000100006
  24. Rens L.R., Zotarelli L., Cantliffe D.J., Stoffella P.J., Gergela D., Burhans D., 2016. Commercial evaluation of seasonal distribution of nitrogen fertilizer for potato. Potato Res. 59, 1–20. https://doi.org/10.1007/s11540-015-9304-6
  25. Rens L.R., Zotarelli L., Rowland D.L., Morgan K.T., 2018. Optimizing nitrogen fertilizer rates and time of application for potatoes under seepage irrigation. Field Crops Res. 215, 49–58. https://doi.org/10.1016/j.fcr.2017.10.004
  26. Rozentsvet O.A., Bogdanova E.S., Nesterov V.N., Shevchenko S.N., Bakunov A.L., Milekhin A.V., Rubtsov S.L., 2021. Productivity and dynamics of morphological, physiological and bio-chemical parameters of potatoes in arid climate. Dok. Biol. Sci. 497, 65–68. https://doi.org/10.1134/S0012496621020095
  27. Rozentsvet O., Bogdanova E., Nesterov V., Bakunov A., Milekhin A., Rubtsov S., Dmitrieva N., 2022. Physiological and biochemical parameters of leaves for evaluation of the potato yield. Agriculture 12(6), 757. https://doi.org/10.3390/agriculture12060757
  28. Roztropowicz S., 1999. Metodyka obserwacji, pomiarów i pobierania prób w agrotechnicznych doświadczeniach z ziemniakiem [Methodology of observation, measurements and sampling in agronomic experiments with potato]. Instytut Hodowli i Aklimatyzacji Roślin, Jadwisin, pp. 50 [in Polish].
  29. Rykaczewska K., 2005a. Wpływ różnych form i dawek nawozów azotowych na rozwój roślin i plon, wskaźnik zieloności liści (SPAD) oraz wydajność fotosyntetyczną dwóch średnio wcze-snych odmian ziemniaka. Część I. Rozwój roślin i plon [The effect of kind and dose of nitrogen fertilizer on plant development, yield, leaf greeneess index SPAD and photosynthetical produc-tivity of middle early potato cultivar. Part I. Plant development and yield]. Fragm. Agron. 22(1), 530–541 [in Polish].
  30. Rykaczewska K. 2005b. Wpływ różnych form i dawek nawozów azotowych na rozwój roślin i plon, wskaźnik zieloności liści (SPAD) oraz wydajność fotosyntetyczną dwóch średnio wczesnych odmian ziemniaka. Część II. Wskaźnik SPAD [The effect of kind and dose of nitrogen fertilizer on plant development, yield, leaf greeneess index SPAD and photosynthetical productivity of middle early potato cultivar. Part II. The SPAD index]. Fragm. Agron. 22(1), 542–549 [in Polish].
  31. Skowera B., 2014. Zmiany warunków hydrotermicznych na obszarze Polski (1971−2010) [Changes of hydrothermal conditions in the polish area (1971−2010)]. Fragm. Agron. 31(2), 74–87 [in Polish].
  32. Swain E.Y., Rempelos L., Orr C.H., Hall G., Chapman R., Almadni, M., Stockdale E.A., Kidd J., Leifert C., Cooper J.M., 2014. Optimizing nitrogen use efficiency in wheat and potatoes: inter-actions between genotypes and agronomic practices. Euphytica 199, 119–136. https://doi.org/10.1007/s10681-014-1181-6
  33. Tehulie N.S., Misgan T., 2019. Review on the effects of nitrogen fertilizer rates on growth, yield components and yield of potato (Solanum tuberosum L.). Int. J. Res. Agron. 2(2), 51–56.
  34. Tibco Statistica, v. 13.3.0, TIBCO Software Inc, Palo Alto, CA, USA, 2017. https://www.tibco. com/products/tibco-statistica
  35. Trawczyński C., 2019. Influence of nitrogen fertilization on the yield, quality and nitrogen utilization efficiency of early potato tubers harvested on two dates. J. Elementol. 24(4), 1253–1267. https://doi.org/10.5601/jelem.2019.24.1.1799
  36. Trawczyński C., 2020. The effect of nitrogen fertilization on yield efficiency and quality of tubers potato varieties cultivated in an integrated production system. Biul. IHAR 288, 15–22. https://doi.org/10.37317/biul-2020-0002
  37. Trawczyński C., 2021. Assessment of mineral nitrogen fertilization of early potato varieties in inte-grated production. J. Elementol. 26(1), 109–123. https://doi.org/10.5601/jelem.2020.25.4.2066
  38. Venkatasalam E.P., Bairwa A., Divya K.L., Sudha R., Mhatre P.H., Govindakrishnan P.M., Singh R.K., 2019. Effect of nitrogen sources on yield and yield components of potato (Solanum tu-berosum) cultivars. Indian J. Agric. Sci. 89(1), 35–40. https://doi.org/10.56093/ijas.v89i1.86101
  39. Vos J., 2009. Nitrogen responses and nitrogen management in potato. Potato Res. 52, 305–317. https://doi.org/10.1007/s11540-009-9145-2
  40. IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports 106. FAO, Rome.

Downloads

Download data is not yet available.

Podobne artykuły

<< < 22 23 24 25 26 27 28 29 30 31 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.