Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 80 Nr 1 (2025)

Artykuły

Efekty zmian konstrukcyjnych elementów roboczych maszyny do uprawy pasowej. Cz. I: Wydajność eksploatacyjna, zużycie paliwa, emisja CO2

DOI: https://doi.org/10.24326/as.2025.5471
Przesłane: 21 grudnia 2024
Opublikowane: 19.05.2025

Abstrakt

Innowacyjne rozwiązania materiałowe i konstrukcyjne czynią maszyny rolnicze bardziej doskonałymi, rozwijają ich rynek i umożliwiają wprowadzanie nowych technologii do polowej produkcji roślinnej. Wzrastające zainteresowanie nauki i praktyki rolniczej pasową uprawą roli z jednoczesną aplikacją nawozów i siewem nasion upoważnia do badań nad konstrukcją elementów roboczych maszyny do uprawy strip-till one-pass dostosowującymi je do pracy w warunkach glebowo-klimatycznych Polski i Europy Środkowo-Wschodniej. W efekcie badań przemysłowych
i prac rozwojowych zmieniono kształt zębów uprawowo-aplikujących i redlic siewnych hybrydowej maszyny Mzuri. Powierzchnia elementów pracujących w glebie została utwardzona przez napawanie węglikiem spiekanym w celu poprawy parametrów pracy w porównaniu z maszyną standardową. Efektem wprowadzonych zmian było zmniejszenie zużycia oleju napędowego o 3,4–3,8 dm3·ha–1 i emisji dwutlenku węgla do atmosfery o 9,3–10,5 kg CO2·ha–1 w agrotechnice pszenicy ozimej, rzepaku ozimego, jęczmienia jarego, grochu i kukurydzy. Zmiany konstrukcyjne elementów roboczych zwiększyły wydajność maszyny o szerokości roboczej 4 m o 28,8%, a o szerokości 6 m o 34,0% w porównaniu z maszyną standardową.

Bibliografia

  1. Abbaspour-Gilandeh Y., Fazeli M., Roshanianfard A., Hernández-Hernández J.L., Fuentes Penna A., Herrera-Miranda I., 2020. Effect of different working and tool parameters on performance of several types of cultivators. Agriculture 10(5), 145. https://doi.org/10.3390/agriculture10050145
  2. Aduov M., Nukusheva S., Kaspakov E., Isenov K., Volodya K., Tulegenov T., 2020. Seed drills with combined coulters in No-till technology in soil and climate zone conditions of Kazakhstan. Acta Agric. Scand. – B Soil Plant Sci. 70(6), 525–531. https://doi.org/10.1080/09064710.2020.1784994
  3. Aramide B., Pityana S., Sadiku R., Jamiru T., Popoola P., 2021. Improving the durability of tillage tools through surface modification – a review. Int. J. Adv. Manuf. Technol. 116, 83–98. https://doi.org/10.1007/s00170-021-07487-4
  4. Astafyev V.L., Kurach A.A., Amantayev M.A., 2021. The influence of scheme and tillage tool parameters on the material consumption and performance of chain tooth harrow. J. Water Land Dev. 50(6–9), 69–73. https://doi.org/10.24425/jwld.2021.138162
  5. Auzins A., Kazotnieks J., Leimane I., Miglavs A., 2021. Assessment of carbon dioxide emissions from different tillage systems. In: Proceedings of the 20th International Scientific Conference Engineering for Rural Development Proceedings, Jelgava, Latvia 2021, 26–28. https://doi.org/10.22616/ERDev.2021.20.TF332
  6. Banasiak J., 2008. Wydajnościowa analiza w procesach eksploatacji maszyn rolniczych. Inżynieria Rolnicza 4(102), 63–68.
  7. Benincasa P., Zorzi A., Panella F., Tosti G., Trevini M., 2017. Strip tillage and sowing: Is precision planting indispensable in silage maize?. Int. J. Plant Prod. 11(4), 577–588. http://dx.doi.org/10.22069/ijpp.2017.3719
  8. Bulgakov V., Adamchuk O., Pascuzzi S., Santoro F., Olt J., 2021. Research into engineering and operating parameters of mineral fertilizer application machine with new fertilizer spreading tools. Agron. Res. 19(S1), 676–686. https://doi.org/10.15159/AR.21.040
  9. Celik A., Boydas M.G., Turgut N., 2007. Comparison of the energy requirements of an experi-mental plow, a moldboard plow and a disk plow. Philipp. Agric. Sci. 90(2), 173–178.
  10. Danda R.R., 2023. Innovations in agricultural machinery: assessing the impact of advanced technol-ogies on farm efficiency. J. Artif. Intell. Big Data, 3(1), 29–48. https://doi.org/10.31586/jaibd.2023.1156
  11. Gulyarenko A., Bembenek M., 2022. The method of calculating ploughshares durability in agricul-tural machines verified on plasma-hardened parts. Agriculture 12(6), 841. https://doi.org/10.3390/agriculture12060841
  12. Hafezalkotob A., Hami-Dindar A., Rabie N., Hafezalkotob A., 2018. A decision support system for agricultural machines and equipment selection: A case study on olive harvester machines. Com-put. Electron. Agric. 148, 207–216. https://doi.org/10.1016/j.compag.2018.03.012
  13. Howey D.A., Martinez-Botas R.F., Cussons B., Lytton L., 2011. Comparative measurements of the energy consumption of 51 electric, hybrid and internal combustion engine vehicles. Transp. Res. D Transp. Environ. 16(6), 459–464. https://doi.org/10.1016/j.trd.2011.04.001
  14. Husti I., Daróczi M., Kovács I., Béres K., 2016. Strip till: an economic alternative for the Hungarian agriculture. Hung. Agric. Eng. 29, 21–23. http://dx.doi.org/10.17676/HAE.2016.29.21
  15. Jaskulska I., Jaskulski D., 2020. Strip-till one-pass technology in Central and Eastern Europe: A MZURI pro-til hybrid machine case study. Agronomy 10(7), 925. https://doi.org/10.3390/agronomy10070925
  16. Javaid M.A., Zia-Ul-Haq H.S.M., Iqbal T., Ansar M., Mehmood T., Yaseen G., Asam H.M., Hu-sain M., Islam M.A., Ali I., 2023. Design, development and testing of different shapes of flails for Pak-seeder. Pure Appl. Biol. 12(4), 1587–1600. http://dx.doi.org/10.19045/bspab.2023.120160
  17. Jiang S., Wang Q., Zhong G., Tong Z., Wang X., Xu J., 2021. Brief review of minimum or no-till seeders in China. AgriEngineering 3(3), 605–621. https://doi.org/10.3390/agriengineering3030039
  18. Kogut Z., 2011. Jakość pracy narzędzi w uprawie gleby z wykorzystaniem mulczu. Post. Nauk Rol. 3, 89–102.
  19. Lekavičienė K., Šarauskis E., Naujokienė S., Buragienėa S., Kriaučiūnienėb Z., 2019. The effect of the strip tillage machine parameters on the traction force, diesel consumption and CO2 emis-sions. Soil Tillage Res. 192, 95–102. https://doi.org/10.1016/j.still.2019.05.002
  20. Li C.S., Tang Y.L., McHugh A.D., Wu X.L., Liu M., Li M., Xiong T., Ling D., Tang Q., Liao M., Du S., Zhu J., Huang Y., 2022. Development and performance evaluation of a wet-resistant strip-till seeder for sowing wheat following rice. Biosyst. Eng. 220, 146–158. https://doi.org/10.1016/j.biosystemseng.2022.05.019
  21. Malvajerdi A.S., 2023. Wear and coating of tillage tools: A review. Heliyon 9(6), e116669. https://doi.org/10.1016/j.heliyon.2023.e16669
  22. Manzone M., Calvo A., 2016. Energy and CO2 analysis of poplar and maize crops for biomass production in north Italy. Renew. Energy 86, 675–681. https://doi.org/10.1016/j.renene.2015.08.047
  23. Matin M.A., Fielke J.M., Desbiolles J.M.A., 2015. Torque and energy characteristics for strip-tillage cultivation when cutting furrows using three designs of rotary blade. Biosyst. Eng. 129, 329–340. https://doi.org/10.1016/j.biosystemseng.2014.11.008
  24. Matin M.A., Hossain M.I., Gathala M.K., Timsina J., Krupnik T.J., 2021. Optimal design and set-ting of rotary strip-tiller blades to intensify dry season cropping in Asian wet clay soil condi-tions. Soil Tillage Res. 207, 104854. https://doi.org/10.1016/j.still.2020.104854
  25. Peel M.C., Finlayson B.L., McMahon T.A., 2007. Updated world map of the Köppen-Geiger cli-mate classification. Hydrol. Earth Syst. Sci. 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
  26. Radin S., Shubkin S., Buneev S., Yeletskikh S., 2023. Improving reliability and efficiency of culti-vators with S-shape racks. W: A. Beskopylny, M. Shamtsyan, V. Artiukh (red.), XV Interna-tional Scientific Conference “INTERAGROMASH 2022”. Lecture Notes in Networks and Systems, 575. Springer, Cham. https://doi.org/10.1007/978-3-031-21219-2_107
  27. Różewicz M., 2022. Review of current knowledge on strip-till cultivation and possibilities of its popularization in Poland. Pol. J. Agron. 49(49), 20–30. https://doi.org/10.26114/pja.iung.488.2022.49.03
  28. Sandhu N., Yadav S., Kumar Singh V., Kumar A., 2021. Effective crop management and modern breeding strategies to ensure higher crop productivity under direct seeded rice cultivation sys-tem: a review. Agronomy 11(7), 1264. https://doi.org/10.3390/agronomy11071264
  29. Sarkar P., Upadhyay G., Raheman H., 2021. Active-passive and passive-passive configurations of combined tillage implements for improved tillage and tractive performance: A review. Span. J. Agric. Res. 19(4), e02R01. https://doi.org/10.5424/sjar/2021194-18387
  30. Šarauskis E., Buragiene S., Romaneckas K., Sakalauskas A., Jasinskas A., Vaiciukevicius E., Karayel D., 2012. Working time, fuel consumption and economic analysis of different tillage and sowing systems in Lithuania. 11th International Scientific Conference ENGINEERING FOR RURAL DEVELOPMENT. Proceedings, Vol. 11, May 24–25, 2012, 52–59.
  31. Šarauskis E., Vaitauskienė K., Romaneckas K., Jasinskas A., Butkus V., Kriaučiūnienė Z., 2017. Fuel consumption and CO2 emission analysis in different strip tillage scenarios. Energy 118, 957–968. https://doi.org/10.1016/j.energy.2016.10.121
  32. Shires T.M., Loughran C.J., Jones S., Hopkins E., 2009. Compendium of greenhouse gas emissions methodologies for the oil and natural gas industry. Prepared by URS Corporation for the Amer-ican Petroleum Institute (API). API, Washington DC
  33. Stošić M., Ivezić V., Tadić V., 2021. Tillage systems as a function of greenhouse gas (GHG) emis-sion and fuel consumption mitigation. Environ. Sci. Pollut. Res. 28, 16492–16503. https://doi.org/10.1007/s11356-020-12211-y
  34. Talarczyk W., Łowiński Ł., 2016. Maszyny uprawowe i uprawowo-siewne opracowane w Przemy-słowym Instytucie Maszyn Rolniczych w Poznaniu. Techn. Rol. Ogrod. Leśna 2, 18–21.
  35. Talarczyk W., Łowiński Ł., 2018. Uprawa pasowa, nawożenie zlokalizowane i siew według zasad rolnictwa precyzyjnego. Techn. Rol. Ogrod. Leśna 1, 8–10.
  36. Wang Q., Wang B., Sun M., Sun X., Zhou W., Tang H., Wang J., 2023. Design and testing of an automatic strip-till machine for conservation tillage of corn. Agronomy 13(9), 2357. https://doi.org/10.3390/agronomy13092357
  37. Wang J.W., Zhang J.M., 2019. Research on innovative design and evaluation of agricultural machin-ery products. Math. Probl. Eng. 1, 8179851. https://doi.org/10.1155/2019/8179851
  38. Woźniak A., Rachoń L., 2020. Effect of tillage systems on the yield and quality of winter wheat grain and soil properties. Agriculture 10(9), 405. https://doi.org/10.3390/agriculture10090405
  39. Yang Y., Hu Z., Gu F., Ding Q., 2023. Simulation and experimental study of the tillage mechanism for the optimal design of wheat rotary strip–tiller blades. Agriculture 13(3), 632. https://doi.org/10.3390/agriculture13030632
  40. Yazıcı A., 2024. Wear on steel tillage tools: A review of material, soil and dynamic conditions. Soil Tillage Res. 242, 106161. https://doi.org/10.1016/j.still.2024.106161
  41. Zbytek Z., 2010. Work quality index and energy consumption index for two-layer cultivation and deep plough. J. Res. Appl. Agric. Eng. 55(1), 120–123.
  42. Zhang B., Jia Y., Fan H., Guo C., Fu J., Li S., Li M., Liu B., Ma R., 2024. Soil compaction due to agricultural machinery impact: A systematic review. Land Degrad. Dev. 35(10), 3256–3273. https://doi.org/10.1002/ldr.5144

Downloads

Download data is not yet available.

Podobne artykuły

<< < 4 5 6 7 8 9 10 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.