Skip to main navigation menu Skip to main content Skip to site footer

Vol. 19 No. 4 (2020)

Articles

ALLEVIATION OF DROUGHT STRESS IN PHASEOLUS VULGARIS L. CULTIVARS USING BIOSTIMULANTS IN ORGANIC AGRICULTURE

DOI: https://doi.org/10.24326/asphc.2020.4.13
Submitted: December 5, 2019
Published: 2020-08-28

Abstract

This research was conducted to investigate the effects of phytostimulators application (Messenger, Crop-Set, ISR-2000) on yield and morphological parameters of common bean cultivars grown under four irrigation regimes [25% (I25), 50% (I50), 75% (I75) and 100% (I100)]. Phytostimulators reversed the negative effect of drought on plant growth. Significant interaction was determined for all parameters except stem diameter and stomatal conductivity between phytostimulator and drought applications. The best effect on stomatal conductivity was provided from ISR-2000 (23.5% reduction) application. The highest yield was obtained from the 25% water deficiency applied with 1.91 ton per hectare. It was determined that the best results were obtained from Messenger in Efsane and Asya cultivars and ISR-2000 in the Öz Ayşe cultivar on yield. Therefore, it was concluded that the use of phytostimulators under drought stress is important for the effective use of water.

References

  1. Abass, S.M., Mohamed, H.I. (2011). Alleviation of adverse effects of drought stress on common bean (Phaseolus vulgaris L.) by exogenous application of hydrogen peroxide. Bangladesh J. Bot., 40(1), 75–83. https://doi.org/10.3329/bjb.v40i1.8001
  2. Anonymous (2020). https://www.xing.com/communities/posts/bitkisel-ueretimde-ve-tarimsal-savasimda-yeni-bir-yaklasim-olarak-bitki-aktivatoerlerinin-rolue-1005122683 [date of access: 19 March 2020].
  3. Ashraf, M., Iram, A. (2005). Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora, 200, 535–546. https://doi.org/10.1016/j.flora.2005.06.005
  4. Basha, D., El-Aila, H.I. (2015). Response of foliar spraying with amino acids and integrated use of nitrogen fertilizer on radish (Raphanus sativus L.) plant. Int. J. Chemtech Res., 8(11), 135–140.
  5. Beebe, E.S., Rao, Idupulapati, M., Cajiao, V., Grajales, M. (2008). Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Sci., 48, 582–592. https://doi.org/10.2135/cropsci2007.07.0404
  6. Boehme, M., Schevschenko, Y., Pinker, I. (2006). Use of biostimulants to reduce abiotics stress in cucumber plants (Cucumis sativus L.). In: XXVII International Horticultural Congress-IHC2006: International Symposium on Endogenous and Exogenous Plant Bioregulators, 774, 339–344. https://doi.org/10.17660/ActaHortic.2008.774.46
  7. Bot, A.J., Nachtergaele, F.O., Young, A. (2000). Land resource potential and constraints at regional and country levels. World Soil Resources Reports 90. Land and Water Development Division, FAO, Rome.
  8. Boutraa, T., Sanders, F.E. (2001). Influence of water stress on grain yield and vegetative growth of two cultivars of bean (Phaseolus vulgaris L.). J. Agron. Crop. Sci., 187(4), 251–257. https://doi.org/10.1046/j.1439-037X.2001.00525.x
  9. Bozkurt, S., Mansuroglu, G.S. (2018). Responses of unheated greenhouse grown green bean to buried drip tape placement depth and watering levels. Agric. Water Manage., 197, 1–8. https://doi.org/10.1016/j.agwat.2017.11.009
  10. Castro, P.R.C., Pereira, M. A. (2008). Bioactivators in agriculture. In: Thiamethoxam: a revolution in the Brazilian agriculture, Gazzoni, D.L. (ed.), 118–126.
  11. Castro, P.R.C., Serciloto, C.M., Pereira, M.A., Rodrigues, J.L.M., Rossi, G. (2009). Agroquímicos de controle hormonal, fosfitos e potencial de aplicação dos aminoácidos na agricultura tropical. Série Produtor Rural, Piracicaba.
  12. da Silva, A.A., Villela, F.A.V., Meneghello, G.E., Deuner, C., de Tunes, L.M., Zimmer, P.D., Jauer, A. (2014). Physiological performance of common bean seeds treated with bioactivator with and without moisture restriction. Am. J. Plant Sci., 5(26), 3769–3776. https://doi.org/10.4236/ajps.2014.526394
  13. Darkwa, K., Ambachew, D., Mohammed, H., Asfaw, A., Blair, M.W. (2016). Evaluation of common bean (Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia. Crop J., 4(5), 367–376. https://doi.org/10.1016/j.cj.2016.06.007
  14. Demirevska, K., Zasheva, D., Dimitrov, R., Simova-Stoilova, L., Stamenova, M., Feller, U. (2009). Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit. Acta Physiol. Plant., 31(6), 11–29. https://doi.org/10.1007/s11738-009-0331-2
  15. El-Noemani, A.A., El-Zeiny, H.A., El-Gindy, A.M., El-Sahhar, E.A., El-Shawadfy, M.A. (2010). Performance of some bean (Phaseolus vulgaris L.) varieties under different irrigation systems and regimes. Aust. J. Basic Appl. Sci., 4, 6185–6196.
  16. FAO (The Food and Agriculture Organization) (2019). FAO Production Year Book [date of access: 10.09.2019].
  17. França, M.G.C., Thi, A.T.P., Pimentel, C., Rossiello, R.O.P., Zuily-Fodil, Y., Laffray, D. (2000). Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress. Environ. Exp. Bot., 43(3), 227–237. https://doi.org/10.1016/S0098-8472(99)00060-X
  18. Gajc-Wolska, J., Lyszkowska, M., Zielony, T. (2010). The influence of grafting and biostimulators on the yield and fruit quality of greenhouse tomato cv. (Lycopersicon esculentum Mill.) grown in the field. Veget. Crops Res. Bull., 72, 63–70. https://doi.org/10.2478/v10032-010-0006-y
  19. Gholamin, R., Khayatnezhad, M. (2011). The effect of end season drought stress on the chlorophyll content, chlorophyll fluorescence parameters and yield in maize cultivars. Sci. Res. Essays., 6, 5351–5357. https://doi.org/10.5897/SRE11.914
  20. Gonçalves, J.G.R., Andrade, E.R.D., Silva, D.A.D., Esteves, J.A.D.F., Chiorato, A.F., Carbonell, S.A.M. (2019). Drought tolerance evaluated in common bean genotypes. Cienc. Agrotecnol., 43, 1–9. https://doi.org/10.1590/1413-7054201943001719
  21. Jiang, Q., Roche, D., Monaco, T.A., Hole, D. (2006). Stomatal conductance is a key parameter to assess limitations to photosynthesis and growth potential in barley genotypes. Plant Biol., 8, 515–521. https://doi.org/10.1055/s-2006-923964
  22. Kaya, E., Daşgan, H.Y. (2013). Screening of the bean genotypes for their tolerans to salinity and drought stresses at the early plant growth phase. Çukurova University Pyhsical and Engineering Sci. J., 29(2), 39–48.
  23. Kocira, A., Kocira, S., Stryjecka, M. (2015a). Effect of Asahi SL application on common bean yield. Agric. Agric. Sci. Procedia, 7, 103–107. https://doi.org/10.1016/j.aaspro.2015.12.045
  24. Kocira, A., Kocira, S., Złotek, U., Kornas, R., Świeca, M. (2015b). Effect of Nano-Gro preparation applications on yield components and antioxidant properties of common bean (Phaseolus vulgaris L.). Fresen. Environ. Bull., 24 (11b), 4034–4041.
  25. Kocira, A., Kornas, R., Kocira, S. (2013). Effect assessment of Kelpak SL on the bean yield (Phaseolus vulgaris L.). J. Cent. Eur. Agric., 14 (2), 67–76. DOI: 10.5513/JCEA01/14.2.1234
  26. Kocira, A., Świeca, M., Kocira, S., Złotek, U., Jakubczyk, A. (2018a). Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi. J. Biol. Sci., 25 (3), 563–571. https://doi.org/10.1016/j.sjbs.2016.01.039
  27. Kocira, S., Kocira, A., Kornas, R., Koszel, M., Szmigielski, M., Krajewska, M., Szparaga, A., Krzysiak, Z. (2018b). Effects of seaweed extract on yield and protein content of two common bean (Phaseolus vulgaris L.) cultivars. Legume Res., 41(4), 589–593. https://doi.org/10.18805/LR-383
  28. Köksal, E.S., Üstün, H., İlbeyi, A. (2010). Threshold values of leaf water potential and crop water stress index as an indicator of irrigation time for dwarf green beans. J Uludağ Univ. Agric. Fac., 24(1), 25–36.
  29. Lima, M.S.D., Carneiro, J., Carneiro, P.C.S., Pereira, C.S., Vieira, R.F., Cecon, P.R. (2012). Characterization of genetic variability among common bean genotypes by morphological descriptors. Crop Breed. Appl. Biot., 12(1), 76–84. http://dx.doi.org/10.1590/S1984-70332012000100010
  30. Lizana, C., Wentworth, M., Martinez, J.P., Villegas, D., Meneses, R., Murchie, E.H., Claudio Pastenes C., Lercari B., Vernieri P., Horton P., Pinto, M. (2006). Differential adaptation of two varieties of common bean to abiotic stress: I. Effects of drought on yield and photosynthesis. J. Exp. Bot., 57 (3), 685–697.
  31. Magalhaes, I.D., Lyra, G.B., Souza, J.L., Teodora, I., Cavalcante, C.A. (2017). Physiology and grain yield of common beans under evapotranspirated water reposition levels. Irrigat. Drainage Sys. Eng., 6(1), 1–8. https://doi.org/10.4172/2168-9768.1000183
  32. Mancosu, N., Snyder, R.L., Kyriakakis, G., Spano, D. (2015). Water scarcity and future challenges for food production. Water, 7(3), 975–992.
  33. Montero-Tavera, V., Ruiz-Medrano, R., Xoconostle-Cázares, B. (2008). Systemic nature of drought-tolerance in common bean. Plant Signal. Behav., 3(9), 663–666. https://doi.org/10.4161/psb.3.9.5776
  34. Paulert, R., Talamini, V., Cassolato, J.E.F., Duarte, M.E.R., Noseda, M.D., Smania, A., Stadnik, M.J. (2009). Effects of sulfated polysaccharide and alcoholic extracts from green seaweed Ulva fasciata on anthracnose severity and growth of common bean (Phaseolus vulgaris L.). J. Plant Dis. Prot., 116 (6), 263–270. https://doi.org/10.1007/BF03356321
  35. Posmyk, M.M., Kontek, R., Janas, K.M. (2009). Exogenous applied red cabbage anthocyanin extract alleviates copper-induced cytological disturbances in plant tissue and human lymphocytes. Biometals, 22, 479–490. https://doi.org/10.1007/s10534-009-9205-8
  36. Ramirez-Vallejo, P., Kelly, J.D. (1998). Traits related to drought resistance in common bean. Euphytica, 99(2), 127–136.
  37. Reddy, P.P. (2012). Plant Defence Activators. In: Recent advances in crop protection. Springer, New Delhi, pp. 121–129. https://doi.org/10.1007/978-81-322-0723-8_9
  38. Rivera, A., Fenero, D., Almirall, A., Ferreira, J.J., Simo, J., Plans, M., del Castillo, R.R., Casanas, F. (2013). Variability in sensory attributes in common bean (Phaseolus vulgaris L.): a first survey in the Iberian secondary diversity center. Genet. Resour. Crop Evol., 60, 1885–1898.
  39. Rosales, M.A., Cuellar-Ortiz, S.M., de la Paz Arrieta-Montiel, M., Acosta-Gallegos, J., Covarrubias, A.A. (2013). Physiological traits related to terminal drought resistance in common bean (Phaseolus vulgaris L.). J. Sci. Food Agric., 93 (2), 324–331. https://doi.org/10.1002/jsfa.5761
  40. Rosales, M.A., Ocampo, E., Rodríguez-Valentín, R., Olvera-Carrillo, Y., Acosta-Gallegos, J., Covarrubias, A.A. (2012). Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. Plant Physiol. Biochem., 56, 24–34. https://doi.org/10.1016/j.plaphy.2012.04.007
  41. Ruiz-Nieto, J.E., Aguirre-Mancilla, C.L., Acosta-Gallegos, J.A., Raya-Pérez, J.C., Piedra-Ibarra, E., Vázquez-Medrano, J., Montero-Tavera, V. (2015). Photosynthesis and chloroplast genes are involved in water-use efficiency in common bean. Plant Physiol Biochem., 86, 166–173. https://doi.org/10.1016/j.plaphy.2014.11.020
  42. Sedlar, A., Kidrič, M., Šuštar-Vozlič, J., Pipan, B., Zadražnik, T., Meglič, V. (2019). Drought Stress Response in Agricultural Plants: A Case Study of Common Bean (Phaseolus vulgaris L.). In: Drought-Detection and Solutions, IntechOpen. DOI: 10.5772/intechopen.86526
  43. Şehirali, S., Erdem, T., Erdem, Y., Kenar, D. (2005). Water-use characteristics of bean (Phaseolus vulgaris L.) under drip irrigation. J. Agric. Sci., 11(2), 212–216.
  44. Sezen, S.M., Yazar, A., Akyildiz, A., Dasgan, H.Y., Gencel, B. (2008). Yield and quality response of drip irrigated green beans under full and deficit irrigation. Sci. Hortic., 117, 95–102. https://doi.org/10.1016/j.scienta.2008.03.032
  45. Świerczyński, S., Borowiak, K., Bosiacki, M., Urbaniak, M., Malinowska, A. (2019). Estimation of the growth of ‘vanda’ maiden sweet cherry trees on three rootstocks and after aplication of foliar fertilization in a nursery. Acta Sci. Pol., Hortorum Cultus, 18(1) 2019, 109–118. DOI: 10.24326/asphc.2019.1.11
  46. Szilagyi, L. (2003). Influence of drought on seed yield components in common bean. Bulg. J. Plant Physiol., 2003 (spl issue), 320–330.
  47. Terán, H., Singh, S.P. (2002). Comparison of sources and lines selected for drought resistance in common bean. Crop Sci., 42(1), 64–70. doi: 10.2135/cropsci2002.6400
  48. Torabian, S., Shakiba, M.R., Nasab, A.D.M., Toorchi, M. (2018). Leaf gas exchange and grain yield of common bean exposed to spermidine under water stress. Photosynthetica, 56(4), 1387–1397. https://doi.org/10.1007/s11099-018-0834-4
  49. Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A., Brown, P.H. (2017). Biostimulants in plant science: a global perspective. Fron. Plant Sci., 7, 2049. https://doi.org/10.3389/fpls.2016.02049

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 87 88 89 90 91 92 93 94 95 96 > >> 

You may also start an advanced similarity search for this article.