Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 5 (2022)

Articles

Effect of blue light and nanosilver on vase life, antioxidant enzymes and some other physiologic parameters of Alstroemeria ‘Napoli’ cut flowers

DOI: https://doi.org/10.24326/asphc.2022.5.10
Submitted: February 24, 2022
Published: 2022-10-28

Abstract

The effects of postharvest blue light exposure have never been studied on cut flowers, so the present study aimed to explore the effects of blue light exposure duration (6, 12, 18, and 24 h) and silver nanoparticle (SNP) application (5, 10, 15, and 20 mg l−1) on the quantitative and qualitative traits of cut Alstroemeria ‘Napoli’ flowers. The control flower received distilled water without blue light exposure. The longest vase life (22.66 days) was related to 10 mg l−1 SNP, not differing from 12 h of blue light exposure (22.00 days) and 20 mg l−1 SNP (21.66 days), significantly. The highest water uptake and total chlorophyll and the lowest ethylene were obtained from the flowers treated with 10 mg l−1 SNP or exposed to 12 h of blue light. These two treatments outperformed the control in reducing MDA accumulation too. APX activity was significantly higher in the flowers treated with 12 h of blue light exposure, 18 h of blue light exposure, or 15 mg l−1 SNP. Except for the blue light exposure for 6 h, all treatments reduced stem-end bacteria versus the control. The lowest bacterial population (57.3 Log10 CFU ml−1) belonged to the flowers treated with 15 mg l−1 SNP. Blue light outperformed SNP in stopping the growth of Gram-positive bacteria and yeast. Based on the results, blue light is introduced as a physical factor to improve the quantitative and qualitative traits of cut Alstroemeria ‘Napoli’ flowers.

References

  1. Alferez, F., Liao, H.L., Burns, J.K. (2012). Blue light alters infection by Penicillium digitatum in tangerines. Postharvest Biol. Technol., 63, 11–15. DOI: https://doi.org/10.1016/j.postharvbio.2011.08.001
  2. Alizadeh Matak, S., Hashemabadi, D., Kaviani, B. (2017). Changes in postharvest physio-biochemical characteristics and antioxidant enzymes activity of cut Alsteroemeria aurantiaca flower as affected by cycloheximide, coconut water and 6-benzyladenine. Biosci. J., 33, 321–332. DOI: https://doi.org/10.14393/BJ-v33n2-34381
  3. Bantis, F., Ouzounis, T., Radoglou, K. (2016). Artificial LED lighting enhances growth characteristics a total phenolic content of Ocimum basilicum, but variably affects transplant success. Sci. Hortic., 198, 277–283. DOI: https://doi.org/10.1016/j.scienta.2015.11.014
  4. Bartoli, C.G., Simontacchi, M., Guiamet, J., Montaldi, E., Puntarulo, S. (1995). Antioxidant enzymes and lipid peroxidation during aging of Chrysanthemum morifolium RAM petals. Plant Sci., 104, 161–168. DOI: https://doi.org/10.1016/0168-9452(94)04020-H
  5. Basiri, Y., Zarei, H., Mashayekhi, K. (2011). Effects of nano-silver treatments on vase life of cut flowers of carnation (Dianthus caryophyllus cv. ‘White Librity’). J. Adv. Lab. Res. Biol., 2, 49–55.
  6. Chanasut, U., Rogers, H.J., Leverenttz, M.K., Griffiths, G., Thomas, B., Wagstaff, C., Stead, A.D. (2003). Increasing flower longevity in Alstroemeria. Postharvest Biol. Technol., 29, 324–332. DOI: https://doi.org/10.1016/S0925-5214(03)00048-6
  7. Cheng, G.P., Li, W.P., Li, F., Huang, X.M., He, S.G. (2012). Physiological effects of Nano-silver treatment on senescence of cut carnation flowers. Northern Hortic., 23, 159–161.
  8. Choi, H.G., Moon, B.Y., Kang, N.J. (2015). Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber. Sci. Hortic., 189, 22–31. DOI: https://doi.org/10.1016/j.scienta.2015.03.022
  9. Christie, J.M., Briggs, W.R. (2001). Blue light sensing in higher plants. J. Biol. Chem., 276, 11457–11460. DOI: https://doi.org/10.1074/jbc.R100004200
  10. Edrisi, B. (2009). Postharvest physiology of cut flowers. Payam-e-Digar Publication. Arak, Iran. 150 p. [in Persian].
  11. Ershad Langroudi, M., Hashemabadi, D., KalateJari, S., Asadpour, L. (2019). Effects of silver nanoparticles, chemical treatments and herbal essential oils on the vase life of cut alstroemeria (Alstroemeria ‘Summer Sky’) flowers. J. Hortic. Sci. Biotechnol., 95(2), 175–182. https://doi.org/10.1080/14620316.2019.1657786 DOI: https://doi.org/10.1080/14620316.2019.1657786
  12. Fazlalizadeh, B., Naghshiband Hassani, R., Zaare-Nahandi, F., Alizadeh-Salteh, S. (2013). Effect of essential oils of cinnamon, clove and silver nanoparticls on vase-life of cut alstroemeria cv. ‘Jamaica’ flowers. Iran. J. Hortic. Sci. Technol., 14, 179–192. [in Persian].
  13. Ferrante, A., Hunter, D.A., Hackett, W.P., Reid, M.S. (2002). Thidiazuron, a potent inhibitor of leaf senescence in alstroemeria. Postharvest Biol. Technol., 25, 333–338. DOI: https://doi.org/10.1016/S0925-5214(01)00195-8
  14. García-Ramírez, Y., Barrera, G.P., Freire-Seijo, M., Barbón, R., Concepción-Hernández, M., Mendoza Rodríguez, M.F., Torres-García, S. (2019). Effect of sucrose on physiological and biochemical changes of proliferated shoots of Bambusa vulgaris Schrad. Ex Wendl in temporary immersion. Plant Cell, Tiss. Organ Cult., 137, 239–247. DOI: https://doi.org/10.1007/s11240-019-01564-z
  15. Giannopolitis, C., Ries, S. (1997). Superoxide dismutase. I: Occurrence in higher plant. Plant Physiol., 59, 309–314. DOI: https://doi.org/10.1104/pp.59.2.309
  16. Gong, D., Cao, S., Sheng, T., Shao, J., Song, C., Wo, F., Chen, W., Yang, Z. (2015). Effect of blue light on ethylene biosynthesis, signaling and fruit ripening in postharvest peaches. Sci. Hortic., 197, 657–664. http://dx.doi.org/10.1016/j.scienta.2015.10.034 DOI: https://doi.org/10.1016/j.scienta.2015.10.034
  17. Halvey, A.H., Mayak, S. (2003). Senescence and postharvest physiology of cut flower. Part 2. Hortic. Rev., 3, 59–146. DOI: https://doi.org/10.1002/9781118060766.ch3
  18. Hashemabadi, D. (2014). The role of silver Nano-particles and silver thiosulfate on the longevity of cut carnation (Dianthus caryophyllus) flowers. J. Environ. Biol., 35, 661–666.
  19. Hassan, F.A.S., Ali, E.F., El-Deeb, B. (2014). Improvement of postharvest quality of cut rose cv. ‘First Red’ by biologically synthesized silver nanoparticles. Sci. Hortic., 179, 340–348. DOI: https://doi.org/10.1016/j.scienta.2014.09.053
  20. Heath, R.L., Parker, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stiochiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125, 189–198. DOI: https://doi.org/10.1016/0003-9861(68)90654-1
  21. Hosseinzadeh, E., Kalatejari, S., Zarrinnia, V., Mashhadi Akbar Boujar, M., Hosseinzadeh, S. (2014). Investigating the impact of nanoparticles on postharvest quality and vase life of the cut roses. Plant Ecosyst., 10, 73–85.
  22. In, B.C., Motomura, S., Inamoto, K., Doi, M., Mori, G. (2007). Multivariate analysis of relation between preharvest environmental factors, postharvest morphological and physiological factors and vase life of cut ‘Asomi Red’ roses. Jpn. Soc. Hortic. Sci., 76, 66–72. DOI: https://doi.org/10.2503/jjshs.76.66
  23. Jadid Solimandarabi, M., Hashemabadi, D., Zaredost, F. (2017). The effect of potassium biofertilizer and chemical fertilizer on quantitative and qualitative traits of periwinkle (Catharanthus roseus cv. ‘Acillata’). J. Ornam. Plants, 7, 213–222.
  24. Jerzy, M., Zakrzewski, P., Schroeter-Zakrzewska, A. (2011). Effect of colour of light on the opening of inflorescence buds and post-harvest longevity of pot chrysanthemums (Chrysanthemum × grandiflorum (Ramat.) Kitam). Acta Agrobot., 64, 13–18. DOI: https://doi.org/10.5586/aa.2011.025
  25. Jowkar, M.M. (2006). Water relations and microbial proliferation in vase solutions of Narcissus tazetta L. cv. ‘Shahla-e-Shiraz’ as affected by biocide compounds. J. Hortic. Sci. Biotechnol., 81, 656–660. DOI: https://doi.org/10.1080/14620316.2006.11512120
  26. Kazemipour, S., Hashemabadi, D., Kaviani, B., Mohammadi, R. (2016). Effect of silver nanoparticles and sodium silicate on vase life and quality of cut chrysanthemum (Dendranthema grandiflorum L.) flower. J. Crop Prod. Proc. 5, 63–74 [in Persian]. DOI: https://doi.org/10.18869/acadpub.jcpp.5.18.63
  27. Kumar, N., Pal, M., Singh, A., Kumar Sairam, R., Srivastava, G.C. (2010). Exogenous proline alleviates oxidative stress and increase vase life in rose (Rosa hybrida L. ‘Grand Gala’). Sci. Hortic., 127, 79–85. DOI: https://doi.org/10.1016/j.scienta.2010.09.009
  28. Lentini, Z., Mussell, H., Mutschler, M.A., Earle, E.D. (1988). Ethylene generation and reversal of ethylene effects during development in vitro rapid-cycling Brassica campertis L. Plant Sci., 54, 75–81. DOI: https://doi.org/10.1016/0168-9452(88)90057-X
  29. Li, H., Li, H., Liu, J., Luo, Z., Joyce, D., He, S. (2017). Nano-silver treatments reduced bacterial colonization and biofilm formation at the stem-ends of cut gladiolus ‘Eerde’ spikes. Postharvest Biol. Technol., 123, 102–111. DOI: https://doi.org/10.1016/j.postharvbio.2016.08.014
  30. Liao, H.L., Alferez, F., Burns, J.K. (2013). Assessment of blue light treatments on citrus postharvest diseases. Postharvest Biol. Technol., 81, 81–88. DOI: https://doi.org/10.1016/j.postharvbio.2013.02.019
  31. Lin, C.T. (2000). Plant blue-light receptors. Trends Plant Sci., 5, 337–342. DOI: https://doi.org/10.1016/S1360-1385(00)01687-3
  32. Lin, S., Li, H., Xian, X., Lin, X., Pang, Z., Liu, J., He, S. (2019a). Nano-silver pretreatment delays wilting of cut gardenia foliage by inhibiting bacterial xylem blockage. Sci. Hortic., 246, 791–796. DOI: https://doi.org/10.1016/j.scienta.2018.11.050
  33. Lin, X., Li, H., Lin, S., Xu, M., Liu, J., Li, Y., He, S. (2019b). Improving the postharvest performance of cut spray ‘Prince’ carnations by vase treatments with Nano-silver and sucrose. J. Hortic. Sci. Biotechnol., 94(4), 513–521. https://doi.org/10.1080/14620316.2019.1572461 DOI: https://doi.org/10.1080/14620316.2019.1572461
  34. Liu, J., Zhang, Z., Joyce, D.C., He, S., Cao, J., Lv, P. (2009). Effect of postharvest nanosilver treatments on cut flowers. Acta Hortic., 847, 245–250. DOI: https://doi.org/10.17660/ActaHortic.2009.847.31
  35. Liu, J.P., Zhang, Z.Q., Li, H.M., Xian, X.J., Huang, X.M., He, S.G. (2014). Nano-silver treatments alleviated bacterial blockage in cut carnation stems. Acta Hortic. Sin., 41, 131–138.
  36. Ma, G., Zhang, L., Kurnia Setiawan, C., Yamawaki, K., Asai, T., Nishikawa, F., Maezawa, S., Sato, H., Kanemitsu, N., Kato, M. (2014). Effect of red and blue LED light irradiation on ascorbate content and expression of genes related to ascorbate metabolism in postharvest broccoli. Postharvest Biol. Technol., 94, 97–103. DOI: https://doi.org/10.1016/j.postharvbio.2014.03.010
  37. Maneerung, T., Tokura, S., Rujiravanit, R. (2008). Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym., 72, 43–51. DOI: https://doi.org/10.1016/j.carbpol.2007.07.025
  38. Mazumdar, B.C., Majumder, K. (2003). Methods on physicochemical analysis of fruits. Univ. Coll. Agric., Calcutta Univ., 136–150.
  39. Mishra, A., Jha, B. (2011). Antioxidant response of the microalga Dunaliella salina under salt stress. Bot. Mar., 54, 195–199. DOI: https://doi.org/10.1515/bot.2011.012
  40. Montazerinezhad, S., Solouki, M., Fakheri, B.A. (2013). The activity of ascorbate peroxidase (Cm APX) enzyme and expression level of its encoding gene in salt stress condition in three Sistan melon Landraces (Cucumis malo L.). Gen. Engin. Biosaf. J., 2, 145–154.
  41. Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramirez, T.J., Yacaman, M.J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnol. J., 16, 2346–2353. DOI: https://doi.org/10.1088/0957-4484/16/10/059
  42. Motaghayer, M.S., Azizi, M., Teheranifar, A. (2019). Nanosilver, salicylic acid and essential oils effects on water relations of gerbera ‘Rosalin’ cut flowers. Hortic. Sci., 33, 271–281.
  43. Mutui, T.M., Emongor, V.E., Hutchinson, M.J. (2006). The effects of gibberellin4+7 on the vase life and flower quality of Alstroemeria cut flowers. Plant Growth Regul., 48, 207–214.
  44. Naing, A.H., Win, N.M., Han, J.S., Lim, K.B., Kim, C.K. (2017). Role of Nano-silver and the bacterial strain enterobacter cloacae in increasing vase life of cut carnation ‘Omea’. Front. Plant Sci., 8, 1–12. DOI: https://doi.org/10.3389/fpls.2017.01590
  45. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22, 867–880.
  46. Ohe, M., Rapolu, M., Mieda, T., Miyagawa, Y., Yabuta, Y., Yoshimura, K., Shigeoka, S. (2005). Decline in leaf photo oxidative stress tolerance with age in tobacco. Plant Sci., 168, 1487–1493. DOI: https://doi.org/10.1016/j.plantsci.2005.01.020
  47. Palma, J.M., Sandalio, L.M., Corpas, F.J., Romero, M.C., McCarthy, I., Río Xiaozhong, L., Huang, B. (2002). Cytokinin effects on creeping bent grass response to heat stress: leaf senescence and antioxidant metabolism. Dep. Bot. Microbiol., Univ. Oklahoma, Crop Sci., 42, 466–472. DOI: https://doi.org/10.2135/cropsci2002.4660
  48. Paull, J., Lyons, K. (2008). Nanotechnology: the next challenge for organics. J. Org. Syst., 3, 3–22.
  49. Samuoliene, G., Brazaityte, A., Sirtautas, R., Virsile, A., Sakalauskaite, J., Sakalauskiene, S., Duchovskis, P. (2013). LED illumination affects bioactive compounds in romaine baby leaf lettuce. J. Sci. Food Agric., 93, 3286–3291. DOI: https://doi.org/10.1002/jsfa.6173
  50. Sedaghathoor, S. (2015). Effect of wall colors and nanosilver treatment on the vase life of cut carnation ‘Express’. J. Ornam. Plants, 5, 1–6.
  51. Shi, L.Y., Cao, S.F., Chen, W., Yang, Z.F. (2014). Blue light induced anthocyanin accumulation and expression of associated genes in Chinese bayberry fruit. Sci. Hortic., 179, 98–102. DOI: https://doi.org/10.1016/j.scienta.2014.09.022
  52. Solgi, M., Kafi, M., Taghavi, T., Naderi, R. (2009). Essential oils and silver Nano particles [SNP] as novel agents to extend vase life of gerbera (Gerbera jamesonii cv. ‘Dune’) flowers. Postharvest Biol. Technol., 53, DOI: https://doi.org/10.1016/j.postharvbio.2009.04.003
  53. –158.
  54. Solgi, M., Kafi, M., Taghavi, T., Naderi, R., Eyre, J.X., Joyce, D.C. (2011). Effects of silver nanoparticles (SNP) on Gerbera jamesonii cut flowers. Intl. J. Postharvest Technol. Innov., 2, 274–285. DOI: https://doi.org/10.1504/IJPTI.2011.043325
  55. Tanazad, M., Sharifi-Sirchi, Gh.R., Mirzaalian-Dastjerdi, A.M., Yousefzadi, M. (2016). Improvement of stability traits and enzyme activities in Diana carnation (Caryophyllus L. Dianthus) cut flower in preservative solutions. J. Plant Res. (Iran. J. Biol.) 29, 43–53 [in Persian].
  56. Van Doorn, W.G. (2012). Water relations of cut flowers: an update. Hortic. Rev., 40, 55–106. DOI: https://doi.org/10.1002/9781118351871.ch2
  57. Van Doorn, W.G., De Wite, Y. (1994). Effects of bacterial on scape bending in cut gerbera flowers. HortScience, 119, 568–571. DOI: https://doi.org/10.21273/JASHS.119.3.568
  58. Wu, Z.C., Huang, L.X., Hu, Y.M., Huang, X.M., He, S.G., Cheng, G.P. (2012). Effects of nano silver pre-treatments on activities of antioxidative enzymes in cut gerbera flowers. Zhongkai Univ. Agric. Engin., 25, 16–19.
  59. Xia, Q.H., Zheng, L.P., Zhao, P.F., Wang, J.W. (2017). Biosynthesis of silver nanoparticles using Artemisia annua callus for inhibiting stem-end bacteria in cut carnation flowers. IET Nanobiotechnol., 11, 185–192. DOI: https://doi.org/10.1049/iet-nbt.2015.0125
  60. Xu, F., Cao, S.F., Shi, L.Y., Chen, W., Su, X.G., Yang, Z.F. (2014a). Blue light irradiation affects the anthocyanin content and enzymes activities involved in postharvest strawberry fruit. J. Agric. Food Chem., 62, 4778–4783. DOI: https://doi.org/10.1021/jf501120u
  61. Xu, F., Shi, L., Chen, W., Cao, S., Su, X., Yang, Z. (2014b). Effect of blue light treatment on fruit quality, antioxidant enzymes and radical-scavenging activity in strawberry fruit. Sci. Hortic., 175, 181–186. DOI: https://doi.org/10.1016/j.scienta.2014.06.012
  62. Yuan, Z., Deng, L., Yin, B., Yao, S., Zeng, K. (2017). Effects of blue LED light irradiation on pigment metabolism of ethephon degreened mandarin fruit. Postharvest Biol. Technol., 134, 45–54. DOI: https://doi.org/10.1016/j.postharvbio.2017.08.005
  63. Zhao, D., Cheng, M., Tang, W., Liu, D., Zhou, S., Meng, J., Tao, J. (2018). Nano-silver modifies the vase life of cut herbaceous peony (Paeonia lactiflora Pall.) flowers. Protoplasma, 1–13. https://doi.org/10.1007/s00709-018-1209-1 DOI: https://doi.org/10.1007/s00709-018-1209-1

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.