Skip to main navigation menu Skip to main content Skip to site footer

Vol. 18 No. 6 (2019)

Articles

COMPARATIVE EVALUATION OF THE ANTIOXIDANT POTENTIAL OF Hericium erinaceus, Hericium americanum AND Hericium coralloides

DOI: https://doi.org/10.24326/asphc.2019.6.10
Submitted: December 17, 2019
Published: 2019-12-17

Abstract

The aim of this work was to determine the total phenolic content (TPC) and the antioxidant activity of methanol extracts of Hericium erinaceus, Hericium americanum and Hericium coralloides, including free radical scavenging method (DPPH), ferric reducing antioxidant power (FRAP) and radical cation scavenging method (ABTS). Hericium spp exhibited moderate to high antioxidant activity. The highest TPC (3.27 ±0.01 mg GAE g–1) and antioxidant activity values (17.0 ±0.68 mmol TE g‒1 in FRAP; EC50 = 4.12 ±0.12 mg mL‒1 in DPPH•; EC50 = 2.83 ± 0.10 mg mL‒1 in ABTS•+) were found for methanol extracts of H. coralloides. The TPC and antioxidant activity of H. erinaceus isolates varied from strain to strain. H. americanum possessed considerably lower total phenolic content (2.31 ±0.01 mg GAE g‒1) and antioxidant activity (10.5 ±0.59 mmol TE g‒1 in FRAP; EC50 = 7.82 ±0.09 mg mL‒1 in DPPH•; EC50 = 6.36 ± 0.12 mg mL‒1 in ABTS•+) than H. coralloides and H. erinaceus. A high correlation was determined between TPC and ABTS•+ (r2 = 0.855), DPPH• (r2 = 0.969) and FRAP (r2 = 0.942). According to results obtained in the present study, Hericium spp., especially H. coralloides and some of H. erinaceus isolates, might be promising natural source of antioxidants for food and pharmaceutical industry.

References

  1. Abdullah, N., Ismail, S.M., Aminudin, N., Shuib, A.S., Lau, B.F. (2012). Evaluation of selected culinary–medicinal mushrooms for antioxidant and ACE inhibitory activities. Evid. Based Complement. Altern. Med., 2012, 1–12. DOI: 10.1155/2012/464238
  2. Barros, L., Ferreira, M.J., Queirós, B., Ferreira, I.C.F.R., Baptista, P. (2007). Total phenols, ascorbic acid, b-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem., 103, 413–419. DOI:10.1016/j.foodchem.2006.07.038
  3. Benzie, F.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 239, 70–76.
  4. Botterweck, A.A.M., Verhagen, H., Goldbohm, R.A., Kleinjans, J., Van den Brandt, P.A. (2000). Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in the netherlands cohort study. Food Chem. Toxic, 38, 599–605. DOI: 10.1016/S0278-6915(00)00042-9
  5. Carneiro, A.A.J., Ferreira, I.C.F.R., Duenas, M., Barros, L., da Silva, R., Gomes, E., Santos-Buelga, C. (2013). Chemical composition and antioxidant activity of dried powder formulations of Agaricus blazei and Lentinus edodes. Food Chem., 138, 2168–2173. DOI: 10.1016/j.foodchem.2012.12.036
  6. Cheung, P.C.K., Cheung, L.M., Ooi, V.E.C. (2003). Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem., 81, 249–255. DOI: 10.1016/S0308-8146(02)00419-3
  7. Ferreira, I.C.F.R., Baptista, P., Vilas-Boas, M., Barros, L. (2007). Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: individual cap and stipe activity. Food Chem., 100, 1511–1516. DOI: 10.1016/j.foodchem.2005.11.043
  8. Heleno, S.A., Barros, L., Martins, A., Queiroz, M.J.R.P., Morales, P., Fernandez-Ruiz, V., Ferreira, I.C.F.R. (2015). Chemical composition, antioxidant activity and bioaccessibility studies in phenolic extracts of two Hericium wild edible species. Food Sci. Technol., 63, 475–481. DOI: 10.1016/j.lwt.2015.03.040
  9. Hocman, G. (1988). Chemoprevention of cancer: phenolic antioxidants (BHT, BHA). Int. J. Biochem. Cell Biol., 20, 639–651.
  10. Islam, T., Yu, X., Xu, B. (2016). Phenolic profiles, antioxidant capacities and metal chelating ability of edible mushrooms commonly consumed in China. LWT – Food Sci. Technol., 72, 423–431. DOI: 10.1016/j.lwt.2016.05.005
  11. Koutrotsios, G., Larou, E., Mountzouris, K.C., Zervakis, G. (2016). Detoxification of olive millwastewater and bioconversion of olive crop residues into high value added biomass by the choice edible mushroom Hericium erinaceus. Appl. Biochem. Biotechnol., 180, 195–209. DOI: 10.1007/s12010-016-2093-9
  12. Koutrotsios, G., Kalogeropoulos, N., Stathopoulos, P., Kaliora, A.C., Zervakis, G.I. (2017). Bioactive compounds and antioxidant activity exhibit high intraspecific variability in Pleurotus ostreatus mushrooms and correlate well with cultivation performance parameters. World J. Microbiol. Biotechnol., 33, 98. DOI: 10.1007/s11274-017-2262-1
  13. Mau, J.L., Lin, H.C., Chen, C.C. (2002). Antioxidant properties of several medicinal mushrooms. J. Agric. Food Chem., 50, 6072–6077. DOI: 10.1021/jf0201273
  14. Nimse, S.B., Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5, 27986–28006, https://doi.org/10.1039/C4RA13315C
  15. Phaniendra, A., Jestadi, D.B., Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. Ind. J. Clin. Biochem., 30, 11–26. DOI: 10.1007/s12291-014-0446-0
  16. Pieckenstain, F., Mercuri, O., Albertó, E. (1999). Mevinolin in naturally occurring specimens of Pleurotus cornucopiae. Micol. Neotrop. Apl., 12, 1–7.
  17. Prior, R.L., Wu, X., Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem., 53, 4290–4302. DOI: 10.1021/jf0502698
  18. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice–Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26, 1231–1237. DOI: 10.1016/S0891-5849(98)00315-3
  19. Reis, F.S., Barros, L., Martins, A., Ferreira, I.C.F.R. (2012). Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: an inter-species comparative study. Food Chem. Toxicol., 50, 191–197. DOI: 10.1016/j.fct.2011.10.056
  20. Reuter, S., Gupta, S.C, Chaturvedi, M.M., Aggarwal, B.B. (2010). Oxidative stress, inflammation, and cancer: how are they linked. Free Radic. Biol. Med., 49, 1603–1616. DOI: 10.1016/j.freeradbiomed.2010.09.006
  21. Saard, P., Sarnthima, R., Khammuang, S., Kanchanarach, W. (2015). Antioxidant, antibacterial and DNA protective activities of protein extracts from Ganoderma lucidum. J. Food Sci. Technol., 52, 2966–2973. DOI: 10.1007/s13197-014-1343-5
  22. Savoie, J.M., Minvielle, N., Largeteau, M.L. (2008). Radical-scavenging properties of extracts from the white button mushroom, Agaricus bisporus. J. Sci. Food Agric., 88, 970–975. DOI: 10.1002/jsfa.3175
  23. Shimada, K., Fujikawa, K., Yahara, K., Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 40, 945–948. DOI: 10.1021/jf00018a005
  24. Sudha, G., Vadivukkarasi, S., Shree, R.B.I., Lakshmanan, P. (2012). Antioxidant activity of various extracts from an edible mushroom Pleurotus eous. Food Sci. Biotechnol., 21, 661–668. DOI: 10.1007/s10068-012-0086-1
  25. Swain, T., Hillis, W.E. (1959). The phenolic constituents of Prunus domestica. I. The quantitative analysis of phenolic constituents. J. Sci. Food Agric., 10, 63–68.
  26. Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., Byrne, D.H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extract. J. Food Compost. Anal., 19, 669–675. DOI: 10.1016/j.jfca.2006.01.003
  27. Tsai, S.Y., Huang, S.J., Mau, J.L. (2006). Antioxidant properties of hot water extracts from Agrocybe cylindracea. Food Chem., 98, 670–677. DOI: 10.1016/j.foodchem.2005.07.003
  28. Tsai, S.Y., Tsai, H.L., Mau, J.L. (2007). Antioxidant properties of Agaricus blazei, Agrocybe cylindracea and Boletus edulis. LWT – Food Sci. Technol., 40, 1392–1402. DOI: 10.1016/j.lwt.2006.10.001
  29. Vamanu, E. (2014). Antioxidant properties of mushroom mycelia obtained by batch cultivation and tocopherol content affected by extraction procedures. BioMed. Res. Int., 974804. DOI: 10.1155/2014/974804
  30. Wong, K.H., Sabaratnam, V., Abdullah, N., Kuppusamy, U.R., Naidu, M. (2009). Effects of cultivation techniques and processing on antimicrobial and antioxidant activities of Hericium erinaceus (Bull.:Fr.) Pers. extracts. Food Technol. Biotechnol., 47, 47–55.

Downloads

Download data is not yet available.

Similar Articles

<< < 11 12 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.