Abstract
The study aimed to investigate the effects of commercially available AMF inoculate (a mixture of Rhizophagus intraradices, Claroideoglomus etunicatum, Funneliformis mossea, Funneliformis geosporum, Rhizophagus clarus) and plant growth promoting bacteria (Rhizobium leguminosarum and Burkholderia sp.), either supplied individually or in combination with each other, on growth, root morphology and nutrient uptake capabilities in field pea (Pisum sativum L.) plants. Inoculated and non-inoculated pea plants were subjected to three levels of salinity (0, 20 and 50 mM) by the addition of sodium chloride into tap water. Morphology of root system was analyzed and dry matter of roots and shoots were individually measured several times during the growing cycle in randomly selected plants. The dry matter of roots and shoots was mixed together and concentration of N, P, K and Na was analytically determined. The raise of salinity in the irrigation water has strongly diminished the growth of pea plants by significantly reducing the weight, length, and surface area of root system, and deteriorating its nutrient capabilities. The inoculation of either AM fungi or PGPB in the growing substrate has contributed to alleviating the salinity stress effects through promoting growth and enhancing nutrient uptake capabilities of the root system. The combined application of AM fungi and PGPB could further enhance the nutrient uptake capabilities of pea plants under adverse salinity conditions.
References
- Abdel Latef, A.A.H., Chaoxing, H. (2011). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci. Hortic., 127, 228–233.
- Abeer, H., Alqarawi, A.A., Mona, A. (2015). Arbuscular mycorrhizal fungi mitigates NaCl induced adverse effects on Solanum lycopersicum L. Pak. J. Bot., 47(1), 327–340.
- Al-Karaki, G.N. (2000). Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10(2), 51–54.
- Aloni, B., Karni, L., Deventurero, G., Cohen, R., Katzir, N., Edelstein M., Aktas H. 2011. The use of plant grafting and plant growth regulators for enhancing abiotic stress tolerance in vegetable transplants. Acta Hortic., 828, 255–264.
- Babaj, I., Sallaku, G., Balliu, A. (2014). The effects of endogenous mycorrhiza (Glomus sp.) on plant growth and yield of grafted cucumber (Cucumis sativum L.) under common commercial greenhouse conditions. Albanian J. Agric. Sci., 13(2), 24–28.
- Balliu, A., Bani, A., Sulçe, S. (2007). Nitrogen effects in the relative growth rate and its components of pepper (Capsicum annum L.) and eggplant (Solanum melongena L.) seedlings. Acta Hortic., 747, 257–262.
- Balliu, A., Sallaku, G., Rewald, B. (2015). AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability, 7, 15967–15981.
- Bona, E., Lingua, G., Manassero, P., Cantamessa, S., Marsano, F., Todeschini, V., Copetta, A., Agostino, G.D., Massa, N., Avidano, L., Gamalero, E., Berta, G. (2015). AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza, 25, 181–193.
- Cuartero, J., Bolarín, M.C., Asíns, M.J., Moreno, V. (2006). Increasing salt tolerance in the tomato. J. Exp. Bot., 57(5), 1045–1058.
- Edelstein, M., Plaut, Z., Ben-Hur, M. (2011). Sodium and chloride exclusion and retention by non-grafted and grafted melon and cucurbita plants. J. Exp. Bot., 62(1), 177–184.
- Egamberdieva, D., Jabborova, D., Wirth S. (2013). Alleviation of salt stress in legumes by co-inoculation with Pseudomonas and Rhizobium. In: Plant microbe symbiosis: fundamentals and advances, Arora, N.K. (ed.). Springer, New Delhi.
- Ekinci, M., Turan, M., Yildirim, E., Güne, A., Kotan, R., Dursun, A. (2014). Effects of plant growth promoting rhizobacteria on growth, nutrient, organic acid, aminoacid and hormone content of cauliflower (Brassica oleracea L. var. botrytis) transplant. Acta Sci. Pol. Hortorum Cultus, 13(6), 71–85.
- Estañ, M.T., Martinez-Rodriguez, M.M., Perez-Alfocea, F., Flowers, T.J., Bolarin, M.C. (2005). Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J. Exp. Bot., 56(412), 703–712.
- Evelin, H., Giri, B., Kapoor, R. (2012). Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza, 22(3), 203–217.
- Evelin, H., Kapoor, R., Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Ann. Bot., 104(7), 1263–1280.
- Flowers, T.J. (2004). Improving crop salt tolerance. J. Exp. Bot., 55(396), 307–319.
- Gamalero, E., Glick, B.R. (2014). Mechanisms used by plant growth-promoting bacteria. In: Bacteria in agrobiology: plant nutrient management, Maheshwari, D.K. (ed.) Springer-Verlag, Berlin–Heidelberg.
- Gomes, M.A.D.C., Suzuki, M.S., Da Cunha, M., Tullii, C.F. (2011). Effect of salt stress on nutrient concentration, photosynthetic pigments, proline and foliar morphology of Salvinia auriculata Aubl. Acta Limnol. Bras., 23(2), 164–176.
- Havugimana, E., Bhople, B.S., Byiringiro, E., Mugabo, J.P. (2016). Role of dual inoculation of Rhizobium and arbuscular mycorrhizal (AM) fungi on pulse crops production. Walailak J. Sci. Technol., 13(1), 1–7.
- Himmelbauer, M.L., Loiskandl, W., Kastanek, F. (2004). Estimating length, average diameter and surface area of roots using two different Image analyses systems. Plant Soil, 260(1–2), 111–120.
- Huang, Y., Zhu, J., Zhen, A., Chen, L., Bie, Z. (2009). Organic and inorganic solutes accumulation in the leaves and roots of grafted and ungrafted cucumber plants in response to NaCl stress. J. Food Agric. Environ., 7(2), 703–708.
- Jahromi, F., Aroca, R., Porcel, R., Ruiz-Lozano, J.M. (2008). Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbiol. Ecol., 55(1), 45–53.
- Liu, W., Baddeley, J., Watson, Ch. (2011). Models of biological nitrogen fixation of legumes. A review. Agron. Sust. Dev., 31 (1), 155–172.
- Martinez, V., Del Amor, F.M., Marcelis, L.F.M., (2005). Growth and physiological response of tomato plants to different periods of nitrogen starvation and recovery. J. Hortic. Sci. Biotechnol., 80, 147–153.
- Meça, E., Sallaku, G., Balliu, A. (2016). Artificial inoculation of AM fungi improves nutrient uptake efficiency in salt stressed pea (Pissum sativum L.) plants. J. Agric. Stud., 4(3), 37–46.
- Meça, E., Sallaku, G., Balliu, A. (2017). Could the artificial inoculation of AM fungi improve the benefits of using pea (Pisum sativum L.) plants for soil amendment purposes in greenhouses? Acta Hortic., 1164, 233–240.
- Mmbaga, G.W., Mtei, K.M., Ndakidemi, P.A. (2014). Extrapolations on the use of rhizobium inoculants supplemented with phosphorus (P) and potassium (K) on growth and nutrition of legumes. Agric. Sci., 5, 1207–1226.
- Munns, R., 2002. Comparative physiology of salt and water stress. Plant Cell Environ., 25(2), 239–250.
- Niu, Y.F., Chai, R.S., Jin, G.L., Wang, H., Tang, C.X., Zhang, Y.S. (2013). Responses of root architecture development to low phosphorus availability: A review. Ann. Bot. 112(2), 391–408.
- Peix, A., Ramírez-Bahena, M.H., Velázquez, E., Bedmar, E. J. (2014). Bacterial associations with legumes. Crit. Rev. Plant Sci., 34(1–3), 17–42.
- Peng, Y., Niklas, K.J., Sun, S. (2011). The relationship between relative growth rate and whole-plant C: N: P stoichiometry in plant seedlings grown under nutrient-enriched conditions. J. Plant Ecol., 4(3), 147–156.
- Porcel, R., Aroca, R., Azcon, R., Ruiz-Lozano, J.M. (2016). Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza, 26(7), 673–684. DOI 10.1007/s00572-016-0704-5.
- Porcel, R., Aroca, R., Ruiz-Lozano, J.M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron. Sustain. Dev., 32, 181–200.
- Rewald, B., Holzer, L., Göransson, H. (2015). Arbus- cular mycorrhiza inoculum reduces root respiration and improves biomass accumulation of salt-stressed Ulmus glabra seedlings. Urban For. Urban Green., 14, 432–437.
- Ruiz-Lozano, J.M., Azcón, R. (2000). Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza, 10, 137–143.
- Pięta, D., Pastucha, A. (2008). Antagonistic bacteria and their post culture liquids in the protection of pea (Pisum sativum L.) from diseases. Acta Sci. Pol. Hortorum Cultus, 7(4), 31–42.
- Shelden, M.C., Roessner, U. (2013). Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals. Front. Plant Sci., 4, 123. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3650683&tool=pmcentrez&rendertype=abstract.
- Vuksani, A., Sallaku, G., Balliu, A. (2015). The effects of endogenous mycorrhiza (Glomus sp.) on stand establishment rate and yield of open field tomato crop. Albanian J. Agric. Sci., 14(1), 25–30.
- Wakeel, A., 2013. Potassium – sodium interactions in soil and plant under saline-sodic conditions. J. Plant Nutr. Soil Sci., 176, 344–354.
Downloads
Download data is not yet available.
-
İbrahim Kahramanoğlu,
Volkan Oktan,
Chuying Chen,
Zengyu Gan,
Chunpeng Wan,
Postharvest hydrothermal treatments to maintain quality of ‘Newhall’ navel orange.
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 21 No. 2 (2022)
-
Samia Ben Mansour-Gueddes,
Dhouha Saidana,
Dhouha Saidana,
Imed Cheraief,
Marwa Dkhilali,
Mohamed Braham,
BIOCHEMICAL, MINERAL AND ANATOMICAL CHARACTERISTICS OF THE OLIVE TREE CV. CHETOUI GROWING IN SEVERAL TUNISIAN AREAS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 2 (2018)
-
Tamer Eryigit,
Bünyamin Yildirim,
Kamil Ekici,
Chemical composition, antioxidant and antibacterial properties of Juniperus excelsa M. Bieb. leaves from Türkiye
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 22 No. 1 (2023)
-
Nabilah A. Samsurizal,
Karolina Nowakowska,
Andrzej Pacholczak,
Influence of plant regulators on the micropropagation of Echinacea purpurea ‘Raspberry Truffle’
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 23 No. 5 (2024)
-
Magdalena Tomaszewska-Sowa,
Anna Figas,
Oliwia Mikołajczak,
Justyna Lema-Rumińska,
Differential effects of plant growth regulators and carbohydrates on in vitro propagation of Scutellaria barbata D. Don
,
Acta Scientiarum Polonorum Hortorum Cultus: ONLINE FIRST
-
Tomo Milošević,
Nebojša Milošević,
QUANTITATIVE ANALYSIS OF THE MAIN BIOLOGICAL AND FRUIT QUALITY TRAITS OF F1 PLUM GENOTYPES (Prunus domestica L.)
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 10 No. 2 (2011)
-
Adnan Younis,
Muhammad Saleem Akhtar,
Atif Riaz,
Faisal Zulfiqar,
Muhammad Qasim,
Amjad Farooq,
Usman Tariq,
Muhammad Ahsan,
Zahid Mukthar Bhatti,
IMPROVED CUT FLOWER AND CORM PRODUCTION BY EXOGENOUS MORINGA LEAF EXTRACT APPLICATION ON GLADIOLUS CULTIVARS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 4 (2018)
-
Tamara V. Ryabtseva,
Nadezhda G. Kapichnikova,
Natalya A. Mikhaĭlovskaya,
INFLUENCE OF SOIL APPLICATION OF BIOLOGICAL AND MINERAL FERTILIZERS ON THE GROWTH, YIELD, AND FRUIT BIOCHEMICAL COMPONENTS OF ‘CHARAVNITSA’ APPLE, AND ON SOME AGROCHEMICAL SOIL CHARACTERISTICS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 4 No. 1 (2005)
-
Piotr Chmielowiec,
Andrzej Borowy,
Evaluation of bentazon and metolachlor in common bean (Phaseolus vulgaris L.) ʼBonaʼCrop
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 3 No. 1 (2004)
-
Marek Kopacki,
Mariusz Szmagara,
Agnieszka Jamiołkowska,
Barbara Skwaryło-Bednarz,
Krystyna Rysiak,
Barbara Marcinek,
THE EFFECT OF FUNGAL ACTIVITY ON PHOTOSYNTHETIC PARAMETERS OF DIFFERENT CANNA CULTIVARS UNDER FIELD CONDITIONS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 3 (2019)
<< < 47 48 49 50 51 52 53 54 55 56 > >>
You may also start an advanced similarity search for this article.