Skip to main navigation menu Skip to main content Skip to site footer

Vol. 13 No. 1 (2014)

Articles

EFFICIENCY OF PHOTOSYNTHETIC APPARATUS OF PLANTS GROWN IN SITES DIFFERING IN LEVEL OF PARTICULATE MATTER

Submitted: November 20, 2020
Published: 2014-02-28

Abstract

Particulate matter (PM) is among the most harmful pollutants inhaled by man. To reduce its concentration in air, plants could be used as biological filters, adsorbing PM on the foliage (SPM) or stabilizing in waxes (WPM). PM has also negative impact on the photosynthetic apparatus, but not much is known in regard to comparison of species responses to PM. In this work, an attempt was made to define the amount of PM and waxes on foliage and to evaluate the efficiency of photosynthetic apparatus in five species grown in two sites differing in level of PM in the air. Obtained results showed, that quantities of PM and waxes on foliage were greater in plants grown in the City centre. These plants had lowered efficiency of photosynthetic apparatus, usually manifested by lower: (1) chlorophyll content, (2) values of chlorophyll a fluorescence parameters and (3) photosynthesis rate, which coincides with an (4) increased stomatal resistance. Among tested
species Sorbaria sorbifolia was the best acclimated to conditions of urban areas with simultaneous highest PM accumulation. Therefore S. sorbifolia is best suited for phytoremediation of PM from air in urban areas.

References

Armbrust D.V., 1986. Effects of particulates (dust) on cotton growth, photosynthesis, and respiration. Agron J. 76, 1078–1081.
Bakker M.I., Vorenhout M., Sijm D.T.H.M., Kolloeffel C., 1999. Dry deposition of atmospheric polycyclic aromatic hydrocarbons in three Plantago species. Environ. Toxicol. Chem. 18, 2289–2294.
Beckett K.P., Freer-Smith P., Taylor G., 1998. Urban woodlands: Their role in reducing the effects of particulate pollution. Environ. Pollut. 99(3), 347–360.
Beckett K.P., Freer-Smith P., Taylor G., 2000. Effective tree species for local air quality management. J. Arboric. 26(1), 12–19.
Dockery D.W., Pope C.A., Xu X., Spengler J.D., Ware J.H., Fay M.E., Ferris B.G. Jr, Speizer F.E., 1993. An association between air pollution and mortality in six U.S. cities. New Engl. J. Med. 329(24), 1753–1759.
Dzierżanowski K., Gawroński S.W., 2011. Use of trees for reducing particulate matter pollution in air. Chall. Mod. Technol. 1(2), 69–73.
Dzierżanowski K., Popek R., Gawrońska H., Sæbø A., Gawroński S.W., 2011. Deposition of particulate matter of different size fractions on leaf surface and in waxes of urban forest species. Int. J. Phytorem. 13, 1037–1046.
European Environment Agency (EEA), 2007. Air pollution in Europe 1990–2004. Official Publications of the European Communities, Copenhagen. Report No 2/2007.
Farmer A., 2002. Effects of particulates. In: Air pollution and plant life, Bell J.N.B., Treshow M. (eds.), Hoboken (NJ), John Wiley Inc, 187–199.
Freer-Smith P.H., Beckett K.P., Taylor G., 2005. Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides × trichocarpa ‘Beaupre’, Pinus nigra and × Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environ. Pollut 133(1), 157–167.
Heerden van P.D.R., Krüger G.H.J., Kilbourn Louw M., 2007. Dynamic responses of photosystem II in the Namib Desert shrub, Zygophyllum prismatocarpum, during and after foliar deposition of limestone dust. Environ. Pollut. 146, 34–45.
Hirano T., Kiyota M., Aiga I., 1995. Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environ. Pollut. 89(3), 255–261.
Jouraeva V.A., Johnson D.L., Hassett J.P., Nowak D.J., 2002. Differences in accumulation of PAHs and metals on the leaves of Tilia × euchlora and Pyrus calleryana. Environ. Pollut. 120(2), 331–338.
Nawrot B., Dzierżanowski K., Gawroński S.W., 2011. Accumulation of particulate matter, PAHs and heavy metals in canopy of small-leaved lime. Ochr. Środ. Zas. Nat. (Environ. Prot. Nat. Res.) 49, 52–60.
Popek R., Gawrońska H., Gawroński S.W., 2011. Zdolność krzewów do akumulacji mikropyłów z powietrza w terenie zurbanizowanym. Nauka, Przyr., Technol. 5(6), 124.
Popek R., Gawrońka H., Wrochna M., Gawroński S.W., Sæbo A., 2013. Particulate matter on foliage of 13 woody species: Deposition on surfaces and phytostabilisation in waxes – a 3-year study. Int. J. Phytorem. 15, 3, 245–256 (first on line: http://www.tandfonline.com/loi/bijp20)
Takagi M., Gyokusen K., 2004. Light and atmospheric pollution affect photosynthesis of street trees in urban environments. Urb. Green 2, 167–171.
Uzu G., Sobanska S., Sarret G., Munoz M., Dumat C., 2010. Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ. Sci. Technol. 44, 3, 1036–1042.
Vardaka E., Cook C.M., Lanaras T., Sgardelis S.P., Pantis J.D., 1995. Effect of dust from a limestone quarry on the photosynthesis of Quercus coccifera, an evergreen schlerophyllous shrub. Bull. Environ. Contam. Tox. 54, 414–419.
World Health Organization (WHO), 2006. Health risks of particulate matter from long-range transboundary air pollution. Joint WHO/Convention Task Force on the Health Aspects of Air Pollution.
Woo S.Y., Je S.M., 2006. Photosynthetic rates and antioxidant enzyme activity of Platanus occidentalis growing under two levels of air pollution along the streets of seoul. J. Plant. Biol. 49(4), 315–319.
Yu L., Mai B., Meng X., Bi X., Sheng G., Fu J., Peng P., 2006. Particle-bound polychlorinated dibenzo-p-dioxins and dibenzofurans in the atmosphere of Guangzhou, China. Atmosph. Environ 40(1), 96–108.

Downloads

Download data is not yet available.