Abstract
Biostimulants are compounds of diverse formulations, that improve quantity and quality of yield. Their positive effect on plants is more evident in stressful conditions. Biostimulants increase a plant’s tolerance to stresses and enable the repair of damage caused by unfavourable conditions. In this study the effect of Asahi SL on Arabidopsis thaliana L. grown in the presence of cadmium (Cd2+) was evaluated.Cd2+ negatively affected examined parameters and processes, leading to disturbances in plant growth and performance. A. thaliana treated with Asahi SL were higher and advanced in development. Biomass accumulation was stimulated by Asahi SL due to a higher efficiency of the photosynthetic apparatus, manifested by higher: (i) leaf area, (ii) chlorophyll content and (iii) intensity of photosynthesis. Despite higher intensity of transpiration and lower stomatal resistance, the relative water content was unchanged in Asahi SL – treated plants
due to the stimulation of root development. Therefore, it can be concluded that Asahi SL protects plants against Cd2+ stress.
References
Ahmad, P., Sarwat, M., Bhat, N.A., Wani, M.R., Kazi, A.G., Tran, L.-S.P. (2015). Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PLoS ONE, 10(1), e0114571.
Asgher, M., Khan, M.I.R., Anjum, N.A., Khan, N.A. (2015). Minimising toxicity of cadmium in plants – role of plant growth regulators. Protoplasma, 252, 399–413.
Borowski, E. (2010). The effect of the method of application and concentration of Asahi SL on the response of cucumber plants to chilling stress. ActaAgrobot., 63(2), 161–169.
Boyes, D.C., Zayed, A.M., Ascenzi, R., McCaskill, A.J., Hoffman, N.E., Davis, K.R., Görlach, J. (2001). Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell, 13(7), 1499–1510.
Dias, M.C., Monteiro, C., Moutinho-Pereira, J., Correia, C., Gonçalves, B., Santos, C. (2013). Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol. Plant., 35(4), 1281–1289.
Djanaguiraman, M., Pandiyan, M., Devi, D.D. (2005). Response of cotton to Atonik and TIBA for growth, enzymes and yield. J. Biol. Sci., 5(2), 158–162.
Djanaguiraman, M., Sheeba, J.A., Devi, D.D., Bangarusamy, U. (2009). Cotton leaf senescence can be delayed by nitrophenolate spray through enhanced antioxidant defence system. J. Agron. Crop. Sci., 195(3), 213–224.
du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic., 196, 3–14.
Farooq, M.A., Ali, S., Hameed, A., Ishaque, W., Mahmood, K., Iqbal, Z. (2013). Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotox. Environ. Saf. 96, 242–249.
Gallego, S.M., Pena, L.B., Barcia, R.A., Azpilicueta, C.E., Iannone, M.F., Rosales, E.P., Zawoznika, M.S., Groppa, M.D., Benavides, M.P. (2012). Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ. Exp. Bot. 83, 33–46.
Gawrońska, H., Przybysz, A., Szalacha, E., Słowiński, A. (2008). Physiological and molecular mode of action of Asahi SLbiostymulator under optimal and stress conditions. Monographs series: Biostimulators in modern agriculture: General Aspects, Gawrońska, H. (ed.). Editorial House Wieś Jutra, Warsaw, 54–76.
Grabowska, A., Kunicki, E., Sękara, A., Kalisz, A., Jezdinský, A., Gintrowicz, K. (2015). The effect of biostimulants on the quality parameters of tomato grown for the processing industry. Agrochimica, 59(3), 203–217.
Haroun, S.A., Shukry, W.M., Abbas, M.A., Mowafy, A.M. (2011). Growth and physiological responses of Solanum lycopersicum to atonik and benzyl adenine under vernalized conditions. J. Ecol. Nat. Environ., 3(9), 319–331.
Khan, A.L., Waqas, M., Hussain, J., Al-Harrasi, A., Lee, I.-J. (2014). Fungal endophyte Penicilliumjanthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum (Sitiens and Rhe). Biol. Fertil. Soils, 50, 75–85.
Kocira, A., Kocira, S., Stryjecka, M. (2015). Effect of Asahi SL application on common bean yield. Agric. Agric. Sci. Proc., 7, 103–107.
Kazda, J., Herda, G., Spitzer, T., Řičařová, V., Przybysz, A., Gawrońska, H. (2015). Effect of nitrophenolates on pod damage caused by the brassica pod midge on the photosynthetic apparatus and yield of winter oilseed rape. J. Pest Sci., 88(2), 235–247.
Kwiatkowski, C.A. (2015). Yield and quality of chamomile (Chamomillarecutita (L.) Rausch.) raw material depending on selected foliar sprays and plant spacing. Acta Sci. Pol. Hortorum Cultus, 14(1), 143–156.
Kwiatkowski, C.A., Haliniarz, M., Kołodziej, B., Harasim, E., Tomczyńska-Mleko, M. (2015). Content of some chemical components in carrot (Daucuscarota L.) roots depending on growth stimulators and stubble crops. J. Elem., 20(4), 933–943.
Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud., 15(4), 523–530
Nazar, R., Iqbal, N., Masood, A., Khan, M.I.R., Syeed, S., Khan, N.A. (2012). Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am. J. Plant Sci., 3(10), 1476–1489.
Nováková, K., Navrátil, T., Šestáková, I., Le, M.P., Vodičková, H., Zámečníková, B., Sokolová, R., Bulíčková, J., Gál, M. (2015). Characterization of cadmium ion transport across model and real biomembranes and indication of induced damage of plant tissues. Monatsh. Chem., 146, 819–829.
Pokluda, R., Sękara, A., Jezdinský, A., Kalisz, A., Neugebauerová, J., Grabowska, A. (2016). The physiological status and stress biomarker concentration of Coriandrumsativum L. plants subjected to chilling are modified by biostimulant application. Biol. Agric. Hortic., 32(4). doi: 10.1080/01448765.2016.1172344
Połeć-Pawlak, K., Ruzik, R., Abramski, K., Ciurzyńska, M., Gawrońska, H. (2005). Cadmium speciation in Arabidopsis thaliana as a strategy to study metal accumulation system in plants. Anal. Chim. Acta, 540(1), 61–70.
Przybysz, A., Gawrońska, H., Gajc-Wolska, J. (2014). Biological mode of action of a nitrophenolates-based biostimulant: case study. Front. Plant Sci., 5(713). doi: 10.3389/fpls.2014.00713
Przybysz, A., Wrochna, M., Slowinski, A., Gawronska, H. (2010). Stimulatory effect of Asahi SL on selected plant species. Acta Sci. Pol. Hortorum Cultus, 2(09), 53–64.
Saidi, I., Chtourou, Y., Djebali, W. (2014). Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. J. Plant Physiol., 171, 85– 91.
Scebba, F., Arduini, I., Ercoli, L., Sebastiani, L. (2006). Cadmium effects on growth and antioxidant enzymes activities in Miscanthussinensis. Biol. Plant., 50(4), 688–692.
Serrano, M., Zapata, P.J., Castillo, S., Guillén, F., Martínez-Romero, D., Valero, D. (2010). Antioxidant and nutritive constituents during sweet pepper development and ripening are enhanced by nitrophenolate treatments. Food Chem., 118, 497–503.
Siedlecka, A., Krupa, Z. (2002). Simple method of Arabidopsis thaliana cultivation in liquid nutrient medium. Acta Physiol. Plant., 24(2), 163–166.
Tran, T.A., Popova, L.P. (2013). Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk. J. Bot., 37, 1–13.
Downloads
Download data is not yet available.