Skip to main navigation menu Skip to main content Skip to site footer

Vol. 17 No. 5 (2018)

Articles

PLANT GROWTH PROMOTING BACTERIAL ENDOPHYTES ISOLATED FROM POLISH HERBAL PLANTS

DOI: https://doi.org/10.24326/asphc.2018.5.9
Submitted: November 30, 2018
Published: 2018-11-30

Abstract

Endophytes produce a wide range of compounds with high application potential, mainly in medicine and agriculture. In this study, we test the hypothesis that endophytic bacteria produce indole-3-acetic acid (IAA), have positive influence on plant root development and are possible to application as plant-growth promoters. Endophytic bacteria were isolated from 3 native growing plant species: Chelidonium majus L., Elymus repens L., Solidago gigantea L. All endophytic strains produced IAA and the highest levels of IAA were observed for Pseudomonas azotoformans P3 strain. Triticale seed bacterization did not affect the seed germination, but had significant influence on root length and the longest roots were obtained after seed treatment with Pseudomonassp. strains. Triticale roots were longer only in seedlings grown from seeds treated with endophytic strains producing high IAA levels (more than 22 µg ml–1). Our results suggest that endophytic Pseudomonas sp. strains isolated from Elymus repens L. can be used as plant-growth promoter.

References

  1. Abbamondi, G.R., Tommonaro, G., Weyens, N., Thijs, S., Sillen, W., Gkorezis, P., Iodice, C., de Mela Rangel W., Nicolaus, B., Vangronsveld, J. (2016). Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem. Biol. Technol. Agric., 3(1), 1. DOI: 10.1186/s40538-015-0051-3.
  2. Ahmad, F., Ahmad, I., Khan, M.S. (2005). Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk. J. Biotechnol., 29, 29–34.
  3. Ali, S., Duan, J., Charles, T.C., Glick, B.R., (2014). A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp. J. Theor. Biol. 343, 193–198. DOI: 10.1016/j.jtbi.2013.10.007.
  4. Bertalan, M., Albano, R., de Pádua, V., Rouws, L., Rojas, C., Hemerly, A., Teixeira, K., Schwab, S., Araujo, J., Oliveira, A., França, L., Magalhães, V., Alquéres, S., Cardoso, A., Almeida, W., Loureiro, M.M., Nogueira, E., Cidade, D., Oliveira, D., Simão, T., Macedo, J., Valadão, A., Dreschsel, M., Freitas, F., Vidal, M., Guedes, H., Rodrigues, E., Meneses, C., Brioso, P., Pozzer, L., Figueiredo, D., Montano, H., Junior, J., de Souza Filho, G., Martin Quintana Flores, V., Ferreira, B., Branco, A., Gonzalez, P., Guillobel, H., Lemos, M., Seibel, L., Macedo, J., Alves-Ferreira, M., Sachetto-Martins, G., Coelho, A., Santos, E., Amaral, G., Neves, A., Pacheco, A.B., Carvalho, D., Lery, L., Bisch, P., Rössle, S.C., Urményi, T., Rael Pereira, A., Silva, R., Rondinelli, E., von Krüger, W., Martins, O., Baldani, J.I., Ferreira, P.C. (2009). Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics, 10, 450. DOI: 10.1186/1471-2164-10-450.
  5. Ehmann, A. (1977). The Van Urk-Salkowski reagent-a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. J. Chromatogr., 132, 267–276. DOI: 10.1016/S0021-9673(00)89300-0.
  6. Fouts, D.E., Tyler, H.L., DeBoy, R.T., Daugherty, S., Ren, Q., Badger, J.H., Durkin, A.S., Huot, H., Shrivastava, S., Kothari, S., Dodson, R.J., Mohamoud, Y., Khouri, H., Roesch, L.F., Krogfelt, K.A., Struve, C., Triplett, E.W., Methé, B.A. (2008). Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet., 4, e1000141. DOI: 10.1371/journal.pgen.1000141.
  7. Freeman, E.M. (1904). The seed-fungus of Lolium temulentum L., the darnel. Philos. T. Roy. Soc. B., 196, 1–27. DOI: 10.1098/rspl.1902.0057.
  8. Glick, B.R. (2015). Introduction to plant growth-promoting bacteria. In: Beneficial plant-bacterial interactions, Glick, B.R. (eds). Springer, Heidelberg, 1–28.
  9. González, M.J., Gorgorosom, F., Reginensim, S.M., Olivera, J.A., Bermúdez, J. (2013). Polyphasic identification of closely related Bacillus subtilis and Bacillus amyloliquefaciens isolated from dairy farms and milk powder. J. Microbiol. Biotechnol. Food Sci., 2(5), 2326–2331.
  10. Gordon, A.S., Weber, R.P. (1951). Colorimetric estimation of indole acetic acid. Plant Physiol., 26(1), 192–195.
  11. Goryluk-Salmonowicz, A., Piórek, M., Rekosz-Burlaga, H., Studnicki, M., Błaszczyk, M. (2016). Endophytic detection in selected European herbal plants. Pol. J. Microbiol., 65(3), 369–375. DOI: 10.5604/17331331.1215617.
  12. Hampton, J.G., TeKrony, D.M. (1995). Handbook of vigour test methods. International Seed Testing Association, Madison..
  13. Hassan, S.E. (2017). Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J. Adv. Res., 8(6), 687–695. DOI: 10.1016/j.jare.2017.09.001.
  14. Huang, W.Y., Cai, Y. Z., Xing, J., Corke, H., Sun, M. (2007). A potential antioxidant resource: endophytic fungi from medicinal plants. Econ. Bot., 61, 14–30. DOI: 10.1663/0013-0001.
  15. Hung, P.Q., Annapurna, K. (2004). Isolation and characterization of endophytic bacteria in soybean (Glycine sp.). Omonrice, 12, 92–101.
  16. Horoszkiewicz-Janka, J., Jajor, E. (2007). Wpływ wybranych biopreparatów do zaprawiania jęczmienia na zasiedlanie ziarna przez grzyby. J. Res. Appl. Agric. Eng.., 52, 61–66.
  17. Krause, A., Ramakumar, A., Bartels, D., Battistoni, F., Bekel, T., Boch, J., Böhm, M., Friedrich, F., Hurek, T., Krause, L., Linke, B., McHardy, A.C., Sarkar, A., Schneiker, S., Syed, A.A., Thauer, R., Vorhölter, F.J., Weidner, S., Pühler, A., Reinhold-Hurek, B., Kaiser, O., Goesmann, A. (2006). Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat. Biotechnol., 24, 1385–1391. DOI: 10.1038/nbt1243.
  18. Kwak, M.J., Song, J.Y., Kim, S.Y., Jeong, H., Kang, S.G., Kim, B.K., Kwon, S.K., Lee, C.H., Yu, D.S., Park, S.H., Kim, J.F. (2012). Complete genome sequence of the endophytic bacterium Burkholderia sp. strain KJ006. J. Bacteriol., 194, 4432–4433. DOI: 10.1128/JB.00821-12.
  19. Liu, W.Y., Chung, K.M., Wong, C.F., Jiang, J.W., Hui, R.K., Leung, F.C. (2012). Complete genome sequence of the endophytic Enterobacter cloacae subsp. Cloacae strain ENHKU01. J. Bacteriol., 194(21), 59–65. DOI: 10.1128/JB.01394-12.
  20. Miller, K., Qing, C., Sze D.M., Roufogalis, B.D., Neilan, B.A. (2012). Culturable endophytes of medicinal plants and the genetic basis for their bioactivity. Microb. Ecol., 64(2), 431–449. DOI: 10.1007/s00248-012-0044-8.
  21. Ngoma L, Mogatlanyane K, Olubukola Oluranti B. 2014. Screening of endophytic bacteria towards the development of cottage industry: An in vitro study. J. Human Ecol. 47(1), 45–63. DOI: 10.1080/09709274.2014.11906738.
  22. Polish Standard PN-R-65950:1994. Sowing material. Seed researching methods.
  23. Reinhold-Hurek, B., Hurek, T. (1988). Life in grasses: diazotrophic endophytes. Trends Microbiol. 6, 139–144. DOI: 10.1016/S0966-842X(98)01229-3.
  24. Romero, F.M., Marina, M., Pieckenstain, F.L. (2014). The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomalRNA gene pyrosequencing. FEMS Microbiol. Lett., 351, 187–194. DOI: 10.1111/1574-6968.12377.
  25. Ronimus, R.S., Parker, L.E., Morgan, H. (1997). The utilization of RAPD-PCR for identifying thermophilic and mesophilic Bacillus species. FEMS Microbiol. Lett., 147, 75–79.
  26. Rosenblueth, M., Martínez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Mol. Plant-Microbe Interact., 19, 827–837. DOI: 10.1094/MPMI-19-0827.
  27. Santoyo, G., Moreno-Hagelsieb, G., Orozco-Mosqueda Ma. Del Carmen., Glick, B.R., (2016). Plant growth-promoting bacterial endophytes. Microbiol. Res., 183, 92–99. DOI: 10.1016/j.micres.2015.11.008.
  28. Schardl, C.L., Grossman, R.B., Nagabhyru, P., Faulkner, J.R., Mallik, U.P. (2007). Loline alkaloids: currencies of mutualism. Phytochemistry, 68, 980–996. DOI: 10.1016/j.phytochem.2007.01.010.
  29. Sgroy, V., Cassán, F., Masciarelli, O., Florencia, Del Papa, M., Lagares, A., Luna, V. (2009). Isolation and characterization of endophytic plantgrowth-promoting (PGPB) or stress homeostasis-regulating(PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl. Microbiol. Biot., 85, 371–381. DOI: 10.1007/s00253-009-2116-3.
  30. Shi, Y., Yang, H., Zhang, T., Sun, J., Lou, K., (2014). Illumina-based analysis ofendophytic bacterial diversity and space-time dynamics in sugar beet on thenorth slope of Tianshan mountain. Appl. Microbiol. Biotechnol., 98, 6375–6385. DOI: 10.1007/s00253-014-5720-9.
  31. Strobel, G., Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev., 67, 491–502. DOI: 10.1128/MMBR.67.4.491-502.
  32. Taghavi, S., Garafola, C., Monchy, S., Newman, L., Hoffman, A., Weyens, N., Barac, T., Vangronsveld, J., van der Lelie, D. (2009). Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl. Environ. Microbiol., 75, 748–757. DOI: 10.1128/AEM.02239-08.
  33. Tan, R.X., Zou, W.X. (2001). Endophytes: a rich source of functional metabolites. Nat. Prod. Rep., 18, 448–459.
  34. Uma Maheswari, T., Anbukkarasi, K., Hemalatha, T., Chendrayan, K. (2013). Studies on phytohormone producing ability of indigenous endophytic bacteria isolated from tropical legume crops. Int. J. Curr. Microbiol. Appl. Sci., 2 (6), 127–136.
  35. Weilharter, A., Mitter, B., Shin, M.V., Chain, P.S., Nowak, J., Sessitsch, A. (2011). Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J. Bacteriol., 193, 3383–3384. DOI: 10.1128/JB.05055-11.
  36. Wiśniewski-Dyé, F., Borziak, K., Khalsa-Moyers, G., Alexandre, G., Sukharnikov, L.O., Wuichet, K., Hurst, G.B., McDonald, W.H., Robertson, J.S., Barbe, V., Calteau, A., Rouy, Z., Mangenot, S., Prigent-Combaret, C., Normand, P., Boyer, M., Siguier, P., Dessaux, Y., Elmerich, C., Condemine, G., Krishnen, G., Kennedy, I., Paterson, A.H., González, V., Mavingui, P., Zhulin, I.B. (2011). Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genetics, 7(12), e1002430. DOI:10.1371/journal.pgen.1002430.
  37. Yan, Y., Yang, J., Dou, Y., Chen, M., Ping, S., Peng, J., Lu, W., Zhang, W., Yao, Z., Li, H., Liu, W., He, S., Geng, L., Zhang, X., Yang, F., Yu, H., Zhan, Y., Li, D., Lin, Z., Wang, Y., Elmerich, C., Lin, M., Jin, Q. (2008). Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc. Nat. Acad. Sci., 105, 7564–7569. DOI: 10.1073/pnas.0801093105.
  38. Yuan, B., Wang, Z., Qin, S., Zhao, G.-H., Feng, Y.-J., Wei, L.-H., Jiang, J.-H. (2012). Study of the anti-sapstain fungus activity of Bacillus amyloliquefaciens CGMCC 5569 associated with Ginkgo biloba and identification of its active components. Biores. Technol., 114, 536–541. DOI: 10.1016/j.biortech.2012.03.062.
  39. Zhao, L., Xu, Y., Lai, X.H., Shan, C., Denq, Z., Ji, Y. (2015). Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Braz. J. Microbiol., 46, 977–989. DOI: 10.1590/S1517-838246420140024.
  40. Zinniel, D.K., Lambrecht, P., Harris, N.B., Feng, Z., Kuczmarski, D., Higley, P., Ishimaru, C.A., Arunakumari, A., Barletta, R.G., Vidaver, A.K. (2002). Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Environ. Microbiol., 68, 2198–2208. DOI: 10.1128/AEM.68.5.2198-2208.2002.

Downloads

Download data is not yet available.

Similar Articles

<< < 67 68 69 70 71 72 73 74 75 76 > >> 

You may also start an advanced similarity search for this article.