Skip to main navigation menu Skip to main content Skip to site footer

Vol. 10 No. 4 (2011)

Articles

RESPONSE OF DIFFERENT BASIL CULTIVARS TO NITROGEN AND POTASSIUM FERTILIZATION: TOTAL AND MINERAL NITROGEN CONTENT IN HERB

Submitted: January 15, 2021
Published: 2011-12-31

Abstract

Growing herbal plants is aimed at obtaining high yield of raw material with high contents of biologically active substances, as well as other important compounds,
also of nutritional character. In the years 2008–2010 (February – May) studies were conducted on the relationship between cultivar, nitrogen dose (NH4NO3), potassium dose (K2SO4), and some components of chemical composition of basil herb. The study subject were basil plants of two Polish cultivars: Kasia and Wala, as well as the green-leaved form, popular on the domestic fresh herb market. Basil was grown in the greenhouse, in pots of the capacity of 4 dm3. Four doses of nitrogen and two doses potassium were applied. In the herb collected during full flowering dry matter, N-NH4 and N-NO3, nitrogen total, potassium and protein contents were determined. It was demonstrated that average dry matter contents in the herb of examined basil plants was 13.20% and significantly depended
on the cultivar and dose of applied nitrogen. The most (15.47%) dry matter was found in the herb of Wala cultivar plants. The increasing nitrogen doses caused the increase of protein contents in basil herb. The most (26.13% d.m.) of protein was found in the herb of plants fed with the highest dose of nitrogen. Plants receiving the most potassium had more (23.24% d.m.) protein in the herb than plants receiving less of that nutrient (22.31% d.m.). Mean content of nitrate nitrogen in the examined herbal material was 0.78% d.m. Plants of Wala cultivar had significantly lower (0.66% d.m.) amount of nitrate nitrogen than the remaining ones. Additionally increased contents were demonstrated of nitrogen (total, ammonium, nitrate) and potassium in basil herb as an effect of increased nitrogen dose.

References

Abbadi J., Gerendas J., Sattelmacher B., 2008. Effects of potassium supply on growth and yield of safflower as compared to sunflower. J. Plant Nutr. Soil Sci., 171, 272–280.
Abd El-Razek E., Treutter D., Saleh M.M.S., El-Shammaa M., Fouad A., Abdel-Hamid N., 2011. Effect of nitrogen and potassium fertilization on productivity and fruit quality of ‘crimson seedless’ grape. Agric. Biol. J. N. Am., 2, 2, 330–340.
Abdel-Motagally F.M.F., Attia K.K., 2009. Response of sugar beet plants to nitrogen and potassium fertilization in sandy calcareous soil. Int. J. Agric. Biol., 11, 695–700.
Amtmann A., Troufflard S., Armengaud P., 2008. The effect of potassium nutrition on pest and disease resistance in plants. Physiol. Plant., 133, 682–691.
Barker A.V., 1999. Foliar ammonium accumulation as an index of stress in plant. Comm. Soil Sci. Plant Analys., 30, 1–2, 167–174.
Biesiada A., Kołota E., 2010. The effect of nitrogen fertilization on yielding and chemical composition of radicchio chicory for autumn-harvest cultivation. Acta Sci. Pol. Hortorum Cultus, 9(4), 85–91.
Biesiada A., Kuś A., 2010. The effect of nitrogen fertilization and irrigation on yielding and nutritional status of sweet basil (Ocimum basilicum L.). Acta Sci. Pol. Hortorum Cultus, 9(2), 3–12.
Biesiada A., Nawirska-Olszańska A., Kucharska A., Sokół-Łętowska A., Kędra K., 2010. The effect of nitrogen fertilization on nutritive value and antioxidative activity of red cabbage. Acta Sci. Pol. Hortorum Cultus, 9(2), 13–21.
Carović-Stanko K., Orlić S., Politem O., Strikić F., 2010. Composition and antibacterial activities of essentials oils of seven Ocimum taxa. Food Chem., 119, 196–201.
Chen B.M., Wang Z.H., Li S.X., Wang G.X., Song H.X., Wang X.N., 2004. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic concentration and nitrate reductase activity in three leafy vegetables. Plant Sci., 167, 635–643.
Custic M., Horvatic M., Butorac A., 2002. Effects of nitrogen fertilization upon the content of essential amino acids in head chicory (Cichorium intybus L. var. foliosum). Sci. Hort., 92, 205–215.
Dambolena J.S., Zunino M.P., López A.G., Rubinstein H.R., Zygadlo J.A., Mwangi J.W., Thoithi G.N., Kibwage I.O., Mwalukumbi J.M., Kariuki S.T., 2010. Essential oils composition of Ocimum basilicum L. and Ocimum gratissimum L. from Kenya and their inhibitory effects on growth and fumonisin production by Fusarium verticillioides. Innovative Food Science Emerging Technologies, 11, 410–414.
Daneshian A., Gurbuz B., Cosge B., Ipek A., 2009. Chemical components of essential oils from basil (Ocimum basilicum L.) grown at different nitrogen levels. Int. J. Nat. Eng. Sci., 3, 3, 8–12.
Dzida K., 2004. Wpływ nawożenia azotowo-potasowego na plonowanie buraka liściowego (Beta vulgaris var. cicla) i zawartość składników w podłożu. Rocz. AR Pozn. 356, Ogrodn., 37, 55–60.
Dzida K., 2010a. Nutrients contents in sweet basil (Ocimum basilicum L.) herb depending on calcium carbonate dose and cultivar. Acta Sci. Pol. Hortorum Cultus, 9(4), 143–151.
Dzida K., 2010b. Biological value and essential oil content in sweet basil (Ocimum basilicum L.) depending on calcium fertilization and cultivar. Acta Sci. Pol. Hortorum Cultus, 9(4), 153–161.
Dzida K., Jarosz Z., 2006. Wpływ zróżnicowanego nawożenia azotowo-potasowego na plonowanie i skład chemiczny sałaty. Acta Agrophisica, 7,3, 591–597.
Dzida K., Jarosz Z., 2010. Effect of calcium carbonate and differentiated nitrogen fertilization upon the yield and chemical composition of spinach beet. Acta Sci. Pol. Hortorum Cultus, 9(3), 201–210.
Dzida K., Pitura K., 2008. The influence of varied nitrogen fertilization on yield and chemical composition of swiss chard (Beta vulgaris L. var. cicla L.). Acta Sci. Pol. Hortorum Cultus, 7(3), 15–24.
Górecki R.J., Grzesiuk S., 2002. Fizjologia plonowania roślin. UMW Olsztyn.
El-Bassiony A.M., 2006. Effect of potassium fertilization on growth, yield and quality of onion plants. J. Applied Sci. Res., 2, 10, 780–785.
Fischer J., 1992. The influence of different nitrogen and potassium fertilization on the chemical flavour composition of kohlrabi (Brassica oleracea var. gongylodes L.). J. Sci. Food Agric., 60, 4, 465–470.
Hanafy Ahmed A.H., Khalil M.K., Farrag Amal M., 2000. nitrate accumulation, growth, yield and chemical composition of rocket (Eruca vesicaria subsp. sativa) plants as affected by NPK fertilization, kinetin and salicylic acid. ICEHM Cairo Univ., Egypt, 495–508.
Golcz A., Politycka B., Seidler-Łożykowska K., 2006. The effect of nitrogen fertilization and stage of plant development on the mass and quality of sweet basil leaves (Ocimum basilicum L.). Herba Pol., 52, 1/2, 22–30.
Hussain A.I., Anwar F., Sherazi S.T.H., Przybylski R., 2008. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem., 108, 986–995.
Ikemoto Y., Teraguchi M., Kogayashi Y., 2002. Plasma level of nitrate in congenital heart disease: comparison with healthy children. Pediatr. Cardiol., 23, 132–136.
Jarosz Z., Konopińska J., 2010. Effect of substrate type and nitrogen fertilization upon yielding and chemical composition of ‘Elsanta’ strawberry cultivar grown in unheated foil tunnel. Acta Sci. Pol. Hortorum Cultus, 9(1), 87–96.
Koba K., Poutouli P.W., Raynaud C., Chaumont J.P., Sanda K., 2009. Chemical composition and antimicrobial properties of different basil essentials oils chemotypes from Togo. Bangladesh J. Pharmacol., 4, 1–8.
Kołota E., Czerniak K., 2010. The effects of nitrogen fertilization on yield and nutritional value of swiss chard. Acta Sci. Pol. Hortorum Cultus, 9(2), 31–37.
Kopcewicz J., Lewak S., 2002. Fizjologia roślin. Wyd. Nauk. PWN, Warszawa.
Kopsell D.A., Kopsell D.E., Curran-Celentano J., 2005. Carotenoid and chlorophyll pigments in sweet basil grown in the field and greenhouse. HortSci., 40, 5, 1230–1233.
Krzebietke S., Benedycka Z., 2006. Wpływ fosforanu mocznika na właściwości fizykochemiczne substratu torfowego w warunkach laboratoryjnych. Acta Agrophysica, 7, 4, 969–976.
Labra M., Miele M., Ledda B., Grassi F., Mazzei M., Sala F., 2004. Morphological characterization, essentials oil composition and DNA genotyping of Ocimum basilicum L. cultivars. Plant Sci., 167, 725–731.
Lamattina L., Garcia-Mata C., Grabiano M., Pagnussat G., 2003. Nitric oxide: the versatility of an extensive signal molecule. Ann. Rev. Plant Biol., 54, 109–136.
Lasa B., Frechilla S., Lamsfus C., Aparicio-Tejo P.M., 2001. The sensitivity to ammonium nutrition is related to nitrogen accumulation. Sci. Hort., 91, 143–152.
Lin D., Huang D., Wang S., 2004. Effects of potassium levels on fruit quality of muskmelon in soilless medium culture. Sci. Hort., 102, 53–60.
Nguyen P.M.N., Kwee E.M., Niemeyer E.D., 2010. Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.). Food Chem., 123, 1235–1241.
Nurzyńska-Wierdak R., 2007a. Evaluation of morphological and developmental variability and essentials oil composition of selected basil cultivars. Herba Pol., 53, 3:255–261.
Nurzyńska-Wierdak R., 2007b. Comparing the growth and flowering of selected basil (Ocimum basilicum L.) varieties. Acta Agrobot., 60, 2: 127–131.
Nurzyńska-Wierdak R., 2006a. Plon oraz skład chemiczny liści rokietty i kalarepy w zależności od nawożenia azotowo-potasowego. Rozp. Nauk. AR Lublin, 307.
Nurzyńska-Wierdak R., 2006b. The effect of nitrogen fertilization on yield and chemical composition of garden rocket (Eruca sativa Mill.) leaves in autumn cultivation. Acta Sci. Pol. Hortorum Cultus, 5(1), 53–63.
Nurzyńska-Wierdak R., 2009. Growth and yield of garden rocket (Eruca sativa Mill.) affected by nitrogen and potassium fertilization. Acta Sci. Pol. Hortorum Cultus, 8(4), 23–33.
Nurzyński J., 2005. Wpływ nawożenia różnymi formami nawozów potasowych na plon oraz skład chemiczny podłoża i liści warzyw. Nawozy i Nawożenie, 3, 24, 448–456.
Nurzyński J., Dzida K., Nowak L., 2007. Oddziaływanie nawożenia azotowego na plon i skład chemiczny kalarepy. Rocz. AR Pozn. 383, Ogrodnictwo, 41, 583–587.
Rao E.V.S.P., Puttanna K., Rao R.S.G., Ramesh S., 2007. Nitrogen and potassium nutrition of French basil (Ocimum basilicum Linn.). J. Spices Aromatic Crops, 16, 2, 99–105.
Santamaria P., Elia A., Serio F., 2002. Effect of solution nitrogen concentration on yield, leaf element content, and water and nitrogen use efficiency of three hydroponically-grown rocket salad genotypes. J. Plant Nutr., 25, 2, 245–258.
Sifola M.I., Barbieri G., 2006. Growth, yield and essentials oil content of three cultivars of basil grown under different levels of nitrogen in the field. Sci. Hort., 108, 408–413.
Singh K., Singh P.P., Beg S.U., Kumar D., Patra D.D., 2004. Effect of NPK fertilizers on growth, oil yield and quality of French basil (Ocimum basilicum L.). J. Spices Aromatic Crops, 13, 52–54.
Stajković O., Berić-Bjedov T., Mitić-Ćulafić D., Stanković S., Vuković-Gačić B., Simić D., Knežević-Vukčević J., 2007. Antimutagenic properties of basil (Ocimum basilicum L.) in Salmonella typhimurium TA 100. Food Technol. Biotechnol., 45, 2, 213–217.
Suh E.-J., Park K.-W., Park K.-W., 1999. Effect of different concentrations of nutrient solutions on the growth, yield, and quality of basil. Acta Hortic., 483, 193–198.
Venkatesan S., Murugesan S., Senthur Pandian V.K., Ganapathy M.N.K., 2005. Impact of sources and dose of potassium on biochemical and Greenleaf parameters of tea. Food Chem., 90, 535–539.
Zheljazkov V.I., Cantrell C.L., Ebelhar M.W., Rowe D.E., Coker C., 2008. Productivity, oil content and oil composition of sweet basil as a function of nitrogen and sulphur fertilization. HortSci., 43, 5: 1415–1422.
Yamamoto A., Takano T., 1996. Effects of anion variations in a nutrient solution on the basil growth, essential oil content and composition. Sci. Rept., Fac. Agr., Meijo Univ., 32, 47–52.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 4 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.