Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 2 (2022)

Articles

Physiological reaction and chemical composition of Stachys schtschegleevii Sosn. essential oil under water deficit.

DOI: https://doi.org/10.24326/asphc.2022.2.9c
Submitted: May 27, 2021
Published: 2022-04-29

Abstract

Stachys schtschegleevii Sosn. is an endemic medicinal plant belonging to the Lamiaceae family and mainly grown in North-western Iran. Drought stress is an important factor in reducing the yield of medicinal herbs. Water-stress tolerance involves subtle changes in cellular biochemistry. It appears to be the result of the accumulation of compatible solutes and of chemical compositions that can be rapidly induced by osmotic stress. For this purpose, the effect of different irrigation regimes (well-watered and irrigation after depletion of 40% and 70% of field capacity (FC)) were studied in S. schtschegleevii. The experiment was conducted in a randomized complete block design in three replications. The results showed that water-deficit had negative effects on shoot dry matter, relative water content, and photosynthetic pigments of the exposed plants. The essential oil (EO) content under water-deficit had an increasing trend. Water-deficit significantly increased total phenol content, proline, H2O2, and malondialdehyde contents. Linalool, β-pinene oxide, α-campholenal
and germacrene-D were the major compounds of essential oils (EOs) affected by water-deficit stress. Finally, although water deficiency reduces the shoot dry matter yield of the S. schtschegleevii, the accumulation of EO increased as a plant response to water-deficit stress.

References

  1. Adams, R.P., Sparkman, O.D. (2007). Review of identification of essential oilcomponents by gas chromatography/mass spectrometry. J. Am. Soc. Mass Spectrom., 18, 803–806. DOI: https://doi.org/10.1016/j.jasms.2007.01.001
  2. Aimar, D., Calafat, M., Andrade, A., Carassay, L., Abdala, G., Molas, M. (2011). Drought tolerance and stress hormones: from model organisms to forage crops. In: Crops, Plants and Environment, Vasanthaiah, H.K.N., Kambiranda, D. (eds.). IntechOpen, London, 137–164. https://doi.org/10.5772/24279 DOI: https://doi.org/10.5772/24279
  3. Aranjuelo, I., Molero, G., Erice, G., Avice, J. C., Nogués, S. (2011). Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicagosativa L.). J. Exp. Bot., 62, 111–123. DOI: https://doi.org/10.1093/jxb/erq249
  4. Azhar, N., Hussain, B., Ashraf, M.Y., Abbasi, K.Y. (2011). Water stress mediated changes in growth, physiology and secondary metabolites of desiajwain (Trachys permumammi L.). Pak. J. Bot., 43(1), 15–19.
  5. Baczek, K., Kosavowska,O., Jaroslaw, L., Przibil, Z. (2016). Accumulation of phenolic compounds in the purple betony herb (Stachys officinalis L.) originated from cultivation. Herbal Pol., 62, 7–16. DOI: https://doi.org/10.1515/hepo-2016-0007
  6. Bartels, D., Sunkar, R. (2005). Drought and salt tolerance in plants. CRC Crit. Rev. Plant Sci., 24, 23–58. DOI: https://doi.org/10.1080/07352680590910410
  7. British Pharmacopoeia Commission. (1993). British pharmacopoeia. HM Sationery Office.
  8. Claussen, W. (2005). Proline as a measure of stress in tomato plants. Plant Sci., 168, 241–248. DOI: https://doi.org/10.1016/j.plantsci.2004.07.039
  9. Cornic, G. (2000). Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends Plant Sci., 5, 187–188. DOI: https://doi.org/10.1016/S1360-1385(00)01625-3
  10. Fahad, S., Bajwa, A.A., Nazir, U., Anjum, S.A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M.Z. (2017). Crop production under drought and heat stress: plant responses and management options. Front Plant Sci., 8, 1147. https://doi.org/10.3389/fpls.2017.01147 DOI: https://doi.org/10.3389/fpls.2017.01147
  11. Foyer, C.H., Noctor, G. (2000). Oxygen processing in photosynthesis: regulation and signaling. New Phytol., 146, 359–388. DOI: https://doi.org/10.1046/j.1469-8137.2000.00667.x
  12. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A. (2012). Role of proline under changing environments: a review. Plant Signal Behav., 7(11), 1456–1466. https://doi.org/10.4161/psb.21949 DOI: https://doi.org/10.4161/psb.21949
  13. Hazrati, S., Rowshan, V., Hosseini, S.J., Sedaghat, M., Mohammadi, H. (2020). Variation of essential oil composition and antioxidant activity in aerial parts of Stachys Schtschegleevi Sosn at different growing stages. J. Essent. Oil-Bear. Plants., 23(5), 1054–1071. DOI: https://doi.org/10.1080/0972060X.2020.1843545
  14. Hazrati, S., Tahmasebi-Sarvestani, Z., Modarres-Sanavy, S.A.M., Mokhtassi-Bidgoli, A., Nicola, S. (2016). Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiol. Biochem., 106, 141–148. DOI: https://doi.org/10.1016/j.plaphy.2016.04.046
  15. Heath, R.L., Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125, 189–198. DOI: https://doi.org/10.1016/0003-9861(68)90654-1
  16. Hoekstra, F.A., Golovina, E.A., Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends Plant Sci., 6, 431–438. DOI: https://doi.org/10.1016/S1360-1385(01)02052-0
  17. Hussain, H.A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S.A., Men, S., Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front. Plant Sci., 9, 393. DOI: https://doi.org/10.3389/fpls.2018.00393
  18. Isah, T. (2019). Stress and defense responses in plant secondary metabolites production. Biol. Res., 52(39), 1–26. DOI: https://doi.org/10.1186/s40659-019-0246-3
  19. Jaafar, H.Z.E., Ibrahim, M.H., Mohamad Fakri, N.F. (2012). Impact of soil field water capacity on secondary metabolites, phenylalanineammonia-lyase(PAL), malondialdehyde(MDA) and photosynthetic responses of Malaysian Kacip Fatimah (Labisiapumila Benth). Molecules., 17(6), 7305–7322. DOI: https://doi.org/10.3390/molecules17067305
  20. Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M., Sharma, A. (2020). The impact of drought in plant metabolism: how to exploit tolerance mechanisms to increase crop production. Appl. Sci., 10(16), 5692. DOI: https://doi.org/10.3390/app10165692
  21. Khalid, K.A. (2006). Influence of water stress on growth, essential oil, and chemical composition of herbs (Ocimum sp.). Int. Agrophys., 20(4), 289–296.
  22. Kliebenstein, D.J. (2013). Making new molecules-evolution of structures for novel metabolites in plants. Curr. Opin. Plant Biol., 16(1), 112–117. DOI: https://doi.org/10.1016/j.pbi.2012.12.004
  23. Kumar, M., Patel, M.K., Kumar, N., Bajpai, A.B., Siddique, K.H., 2021. Metabolomics and Molecular Approaches Reveal Drought Stress Tolerance in Plants. Int. J. Mol. Sci., 22(17), 9108. DOI: https://doi.org/10.3390/ijms22179108
  24. Lichtenthaler, H.K., Wellburn, A.R. (1983). Determination of total carotenoids and chlorophylls a and b in leaf extracts in different solvents. Biochem. Soc. Trans., 11, 591–592. DOI: https://doi.org/10.1042/bst0110591
  25. Lisar, S.Y., Rahman, I.M., Hossain, M.M., Motafakkerazad, R. (2012). Water stress in plants: causes, effects and responses. In: Water Stress, Rahman, I.M.M., Hasegawa, H., (eds.). InTech, Croatia, 1–14. DOI: https://doi.org/10.5772/39363
  26. McDonald, S., Prenzler, P.D., Autolovich, M., Robard, S. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chem. Toxicol., 73, 73–84. DOI: https://doi.org/10.1016/S0308-8146(00)00288-0
  27. Minaei, A., Hassani, A., Nazemiyeh, H., Besharat, S. (2019). Effect of drought stress on some morphophysiological and phytochemical characteristics of Oregano (Origanumvulgare L. ssp. gracile). Iran. J. Med. Aromat. Plants, 35(2), 252–265.
  28. Mohammadi, H., Ghorbanpour, M., Brestic, M. (2018). Exogenous putrescine changes redox regulations and essential oil constituents in field-grown Thymus vulgaris L. under well-watered and drought stress conditions. Ind Crops Prod., 122, 119–132. DOI: https://doi.org/10.1016/j.indcrop.2018.05.064
  29. Mohammadi, H., Saeedi, S., Hazrati, S., Brestic, M. (2021). Physiological and phytochemical responses of lemon balm (Melissa officinalis l.) to pluramin application and inoculation with pseudomonasfluorescens Pf-135 under water-deficit stress. Russ. J. Plant Physiol., 68, 909–922. https://doi.org/10.1134/S1021443721050125 DOI: https://doi.org/10.1134/S1021443721050125
  30. Mozaffarian, V.A. (1966). Dictionary of Iranian plant names. Farhang Moaser, Tehran, 523.
  31. Noctor, G., Veljovic-Jovanovic, S., Driscoll, S., Novitskaya, L., Foyer, C.H. (2002). Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration. Ann. Bot., 89, 841–850. DOI: https://doi.org/10.1093/aob/mcf096
  32. Pérez-Gálvez, A., Viera, I., Roca, M. (2020). Carotenoids and chlorophylls as antioxidants. Antioxidants, 9(6), 505. DOI: https://doi.org/10.3390/antiox9060505
  33. Sachdev, S., Ansari, S.A., Ansari, M.I., Fujita, M., Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants, 10(2), 277. DOI: https://doi.org/10.3390/antiox10020277
  34. Sayyad-Amin, P., Jahansooz, M.R., Borzouei, A., Ajili, F. (2016). Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress. J. Biol. Phys., 42(4), 601–620. https://doi.org/10.1007/s10867-016-9428-1 DOI: https://doi.org/10.1007/s10867-016-9428-1
  35. Slama, I., Ghnaya, T., Hessini, K., Messedi, D., Savoure, A., Abdelly, C. (2007). Comparative study of the effects of mannitol and PEG osmotic stress on growth and solute accumulation in Sesuvium portulacastrum. Environ. Exp. Bot., 61, 10–17. DOI: https://doi.org/10.1016/j.envexpbot.2007.02.004
  36. Smirnoff, N. (1993). The role of active oxygen in response of plants to water deficit and desiccation. New Phytol., 125, 27–58. DOI: https://doi.org/10.1111/j.1469-8137.1993.tb03863.x
  37. Sonboli, A., Salehi, P., Ebrahimi, S.N. (2005). Essential oil composition and antibacterial activity of the leaves of Stachys schtschegleevii from Iran. Chem. Nat. Compd., 41(2), 171–174. DOI: https://doi.org/10.1007/s10600-005-0105-z
  38. Szabó, K., Zubay, P., Németh-Zámboriné, É. (2020). What shapes our knowledge of the relationship between water deficiency stress and plant volatiles? Acta Physiol. Plant., 42, 130. DOI: https://doi.org/10.1007/s11738-020-03120-1
  39. Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M.,Yamaguchi-Shinozaki, K., Shinozaki, K. (2002). Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J., 29, 417–426. DOI: https://doi.org/10.1046/j.0960-7412.2001.01227.x
  40. Thomas, M.T., Gausling, T. (2000). Morphologicaland physiological responses of oak (Quercuspetraea and Q. robur) to moderate drought. Ann. For. Sci., 57, 325–333. DOI: https://doi.org/10.1051/forest:2000123
  41. Velikova, V., Yordanov, I., Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci., 151, 59–66. DOI: https://doi.org/10.1016/S0168-9452(99)00197-1
  42. Verma, N., Shukla, S. (2015). Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants, 2(4), 105–113. DOI: https://doi.org/10.1016/j.jarmap.2015.09.002
  43. Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae, 7(3), 50. DOI: https://doi.org/10.3390/horticulturae7030050
  44. Zobayed, S.M.A., Afreen, F., Kozai, T. (2007). Phytochemical and physiological changes in the leaves of St. John’s wort plants under a water stress condi­tion. Environ. Exp. Bot., 59(2), 109–116. DOI: https://doi.org/10.1016/j.envexpbot.2005.10.002

Downloads

Download data is not yet available.