Skip to main navigation menu Skip to main content Skip to site footer

Vol. 18 No. 2 (2019)

Articles

METHYL JASMONATE – A MULTIFUNCTIONAL MOLECULE THROUGHOUT THE WHOLE PLANT LIFE

DOI: https://doi.org/10.24326/asphc.2019.2.21
Submitted: April 18, 2019
Published: 2019-04-18

Abstract

Methyl jasmonate (MJ) is a widely occurring molecule. Since it is synthesized constitutively, its presence is substantial to plant normal growth and development. Moreover, its elevated concentration detected under abiotic and biotic stress conditions seems to be crucial to plant in reacting to adverse events and its ability to survive. Because of the sophisticated biochemical machinery inside the plant body, MJ, among other molecules, helps the plant to adopt to the surrounding environmental changes and is involved in its defense system.

References

  1. Ahmad, P., Rasool, S., Gul, A., Sheikh, S.A., Akram, N.A., Ashraf, M., Kazi, A.M., Gucel, S. (2016). Jasmonates: multifunctional roles in stress tolerance. Front. Plant Sci., 7, 813. DOI: 10.3389/fpls.2016.00813
  2. Akan, S., Tuna Gunes, N., Yanmaz, R. (2019). Methyl jasmonate and low temperature can help for keeping some physicochemical quality parameters in garlic (Allium sativum L.) cloves. Food Chem., 270, 546–553. DOI: 10.1016/j.foodchem.2018.07.085
  3. Antico, C.J., Colon, C., Banks, T., Ramonell, K.M. (2012). Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Front. Biol., 7(1), 48–56. DOI: 10.1007/s11515-011-1171-1
  4. Ávila-Juárez, L., Torres-Pacheco, I., Ocampo-Velázquez, R.V., Feregrino-Pérez, A.A., Cruz Hernández, A., Guevara-González, R.G. (2017). Integrating plant nutrients and elicitors for production of secondary metabolites, sustainable crop production and human health: a review. Int. J. Agric. Biol., 19(3), 391–402. DOI: 10.17957/IJAB/15.0297
  5. Bastías, D.A., Martínez‐Ghersa, M.A., Newman, J.A., Card, S.D., Mace, W.J., Gundel, P.E. (2018). Jasmonic acid regulation of the anti‐herbivory mechanism conferred by fungal endophytes in grasses. J. Ecol., 106, 2365–2379. DOI: 10.1111/1365-2745.12990
  6. Bayram, A., Tonğa, A. (2018). Methyl jasmonate affects population densities of phytophagous and entomophagous insects in wheat. Appl. Ecol. Env. Res., 16(1), 181–198.
  7. Bohnert, H.J., Nelson, D.E., Jensen, R.G. (1995). Adaptations to environmental stresses. Plant Cell, 7, 1099–1111. DOI:
  8. Bruce, T.J.A., Pickett, J.A. (2011). Perception of plant volatile blends by herbivorous insects – finding the right mix. Phytochemistry, 72, 1605–1611. DOI: 10.1016/j.phytochem.2011.04.011
  9. Brunissen, L., Vincent, C., Le Roux, V., Giordanengo, P. (2010). Effects of systemic potato response to wounding and jasmonate on the aphid Macrosiphum euphorbiae (Sternorryncha: Aphididae). J. Appl. Entomol., 134(7), 562–571. DOI: 10.1111/j.1439-0418.2009.01493.x
  10. Butt, U.R., Naz, R., Nosheen, A., Yasmin, H., Keyani, R., Hussain, I., Hassan, M.N. (2019). Changes in pathogenesis-related gene expression in response to bioformulations in the apoplast of maize leaves against Fusarium oxysporum. J. Plant Interact., 14(1), 61–72. DOI: 10.1080/17429145.2018.1550217
  11. Carvalho, R.F., Monteiro, C.C., Caetano, A.C., Dourado, M.N., Gratão, P.L., Haddad, C.R.B., Peres, L.E.P., Azevedo, R.A. (2013). Leaf senescence in tomato mutants as affected by irradiance and phytohormones. Biol. Plant., 57(4), 749–757. DOI: 10.1007/s10535-013-0333-1
  12. Chen, Y., Wang, Y., Huang, J., Zheng, C., Cai, C., Wang, Q., Wu, C.A. (2017). Salt and methyl jasmonate aggravate growth inhibition and senescence in Arabidopsis seedlings via the JA signaling pathway. Plant Sci., 261, 1–9. DOI: 10.1016/j.plantsci.2017.05.005
  13. Chen, J., Yan, Z.Z., Li, X. (2014). Effect of methyl jasmonate on cadmium uptake and antioxidative capacity in Kandelia obovata seedlings under cadmium stress. Ecotox. Environ. Safe., 104, 349–356. DOI: 10.1016/j.ecoenv.2014.01.022
  14. Cheong, J.-J., Choi, Y.D. (2003). Methyl jasmonate as a vital substance in plants. Trends Genet., 19(7), 409–413. DOI: 10.1016/S0168-9525(03)00138-0
  15. Creelman, R.A., Mullet, J.E. (1997). Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 48, 355–381. DOI: 10.1146/annurev.arplant.48.1.355
  16. Dai, J., Kong, X., Zhang, D., Li, W., Dong, H. (2017). Technologies and theoretical basis of light and simplified cotton cultivation in China. Field Crops Res., 214, 142–148. DOI: 10.1016/j.fcr.2017.09.005
  17. Dar, T.A., Uddin, M., Khan, M.M.A., Hakeem, K.R., Jaleel, H. (2015). Jasmonates counter plant stress: a review. Environ. Exp. Bot., 115, 49–57. DOI: 10.1016/j.envexpbot.2015.02.010
  18. Das, A., Lee, S.H., Hyun, T.K., Kim, S.W., Kim, J.Y. (2013). Plant volatiles as method of communication. Plant Biotechnol. Rep., 7(1), 9–26. DOI: 10.1007/s11816-012-0236-1
  19. Dave, A., Hernández, M.L., He, Z., Andriotis, V.M.E., Vaistij, F.E., Larson, T.R., Graham, I.A. (2011). 12oxo-phytodienoic acid accumulation during seed development represses germination in Arabidopsis. Plant Cell, 23, 583–599. DOI: 10.1105/tpc.110.081489
  20. Donà, M., Macovei, A., Faè, M., Carbonera, D., Balestrazzi, A. (2013). Plant hormone signaling and modulation of DNA repair under stressful conditions. Plant Cell Rep., 32(7), 1043–1052. DOI: 10.1007/s00299-013-1410-9
  21. Faghih, S., Zarei, A., Ghobadi, C. (2019). Positive effects of plant growth regulators on physiology responses of Fragaria × ananassa cv. ‘Camarosa’ under salt stress. Int. J. Fruit Sci., 19(1), 104–114. DOI: 10.1080/15538362.2018.1462291
  22. Fan, L., Shi, J., Zuo, J., Gao, L., Lv, J., Wang, Q. (2016). Methyl jasmonate delays postharvest ripening and senescence in the non-climacteric eggplant (Solanum melongena L.) fruit. Postharvest Biol. Technol., 120, 76–83. DOI: 10.1016/j.postharvbio.2016.05.010
  23. FDA-EPA (2013). Methyl jasmonate; Exemption from the requirement of a tolerance. Document 78(74), FR 22789, pp. 22789‒22794. Available: federalregister.gov/documents/2013/04/17/2013-08829/methyljasmonate-exemption-from-the-requirement-of-atolerance
  24. Fugate, K.K., Lafta, A.M., Eide, J.D., Li, G., Lulai, E.C., Olson, L.L., Deckard, E.L., Khan, M.F.R., Finger, F.L. (2018). Methyl jasmonate alleviates drought stress in young sugar beet (Beta vulgaris L.) plants. J. Agro. Crop Sci., 204, 566–576. DOI: 10.1111/jac.12286
  25. Gai, Q.-Y., Jiao, J., Wang, X., Zang, Y.-P., Niu, L.-L., Fu, Y.-J. (2019). Elicitation of Isatis tinctoria L. hairy root cultures by salicylic acid and methyl jasmonate for the enhanced production of pharmacologically active alkaloids and flavonoids. PCTOC, 137, 77–86. DOI: 10.1007/s11240-018-01553-8
  26. García-Pastor, M.E., Serrano, M., Guillén, F., Castillo, S., Martínez-Romero, D., Valero, D., Zapata, P.J. (2019). Methyl jasmonate effects on table grape ripening, vine yield, berry quality and bioactive compounds depend on applied concentration. Sci. Hortic., 247, 380–389. DOI: 10.1016/j.scienta.2018.12.043
  27. Glowacz, M., Bill, M., Tinyane, P.P., Sivakumar, D. (2017). Maintaining postharvest quality of cold stored ‘Hass’ avocados by altering the fatty acids content and composition with the use of natural volatile compounds – methyl jasmonate and methyl salicylate. J. Sci. Food Agric., 97, 5186–5193. DOI: 0.1002/jsfa.8400
  28. Goodrich-Tanrikulu, M., Mahoney, N.E., Rodriguez, S.B. (1995). The plant growth regulator methyl jasmonate inhibits aflatoxin production by Aspergillus flavus. Microbiology, 141, 2831–2837. DOI: 10.1099/13500872-141-11-2831
  29. Goyal, R.K., Fatima, T., Topuz, M., Bernadec, A., Sicher, R., Handa, A.K., Mattoo, A.K. (2016). Pathogenesisrelated protein 1b1 (PR1b1) is a major tomato fruit protein responsive to chilling temperature and upregulated in high polyamine transgenic genotypes. Front. Plant Sci., 7, 901. DOI: 10.3389/fpls.2016.00901
  30. Han, Y., Chen, C., Yan, Z., Li, J., Wang, Y. (2019). The methyl jasmonate accelerates the strawberry fruits ripening process. Sci. Hortic., 249, 250–256. DOI:
  31. Hanaka, A., Lechowski L., Mroczek-Zdyrska M., Strubińska J. (2018). Oxidative enzymes activity during abiotic and biotic stresses in Zea mays leaves and roots exposed to Cu, methyl jasmonate and Trigonotylus caelestialium. Physiol. Mol. Biol. Plants, 24(1), 1–5. DOI: 10.1007/s12298-017-0479-y
  32. Hanaka, A., Maksymiec W., Bednarek, W. (2015). The effect of methyl jasmonate on selected physiological parameters of copper-treated Phaseolus coccineus plants. Plant Growth Regul., 77, 167–177. DOI: 10.1007/s10725-015-0048-8
  33. Hanaka, A., Wójcik, M., Dresler, S., Mroczek-Zdyrska, M., Maksymiec, W. (2016). Does methyl jasmonate modify the oxidative stress response in Phaseolus coccineus treated with Cu? Ecotox. Environ. Saf., 124, 480–488. DOI: 10.1016/j.ecoenv.2015.11.024
  34. Hassini, I., Martinez-Ballesta, M.C., Boughanmi, N., Diego A. Moreno, D.A., Carvajal, M. (2017). Improvement of broccoli sprouts (Brassica oleracea L. var. italica) growth and quality by KCl seed priming and methyl jasmonate under salinity stress. Sci. Hortic., 226, 141–151. DOI: 10.1016/j.scienta.2017.08.030
  35. He, M.Y., Xu, Y., Cao, J.L., Zhu, Z.G., Jiao, Y.T., Wang, Y.J., Guan, X., Yang, Y.Z., Xu, W.R., Fu, Z.F. (2013). Subcellular localization and functional analyses of a PR10 protein gene from Vitis pseudoreticulata in response to Plasmopara viticola infection. Protoplasma, 250, 129–140. DOI: 10.1007/s00709-012-0384-8
  36. Hong, J.K., Hwang, B.K. (2002). Temporal and subcellular localization of PR-1 proteins in tomato stem tissues infected by virulent and avirulent isolates of Phytophthora capsici. Protoplasma, 219, 131–139. DOI: 10.1007/s007090200014
  37. Horbowicz, M., Chrzanowski, G., Koczkodaj, D., Mitrus, J. (2011). The effect of methyl jasmonate vapors on content of phenolic compounds in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Soc. Bot. Pol., 80(1), 5‒9.
  38. Howe, G.A. (2004) Jasmonates as signals in the wound response. J. Plant Growth Regul., 23, 223–237. DOI: 10.1007/s00344-004-0030-6
  39. Ji, J-J., Feng, Q., Sun, H.-F., Zhang, X.-J., Li, X.-X., Li, J.K., Gao, J.-P. (2019). Response of bioactive metabolite and biosynthesis related genes to methyl jasmonate elicitation in Codonopsis pilosula. Molecules, 24, 533. DOI: 10.3390/molecules24030533
  40. Ji, Y., Liu, J., Xing, D. (2016). Low concentrations of salicylic acid delay methyl jasmonate-induced leaf senescence by up-regulating nitric oxide synthase activity. J. Exp. Bot., 67(17), 5233–5245. DOI: 10.1093/jxb/erw280
  41. Kazan, K., Manners, J. (2011). The interplay between light and jasmonate signalling during defense and development. J. Exp. Bot., 62, 4087–4100. DOI: 10.1093/jxb/err142
  42. Koda, Y., Kikuta, Y. (2001). Effects of jasmonates on in vitro tuberization in several potato cultivars that differ greatly in maturity. Plant Prod. Sci., 4(1), 66–70.
  43. Król, P., Igielski, R., Pollmann, S., Kępczyńska, E. (2015). Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f. sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation. J. Plant Physiol., 179, 122–132. DOI: 10.1016/j.jplph.2015.01.018
  44. Liu, S., Qi, T.T., Ma, J.J., Ma, T., Ma, L., Lin, X. (2016). Ectopic expression of a SOC1 homolog from Phyllostachys violascens alters flowering time and identity of floral organs in Arabidopsis thaliana. Trees, 30, 2203–2215. DOI: 10.1007/s00468-016-1445-y
  45. Lorbeth, R., Dammann, C., Ebneth, M., Amati, S., SanchezSerrano, J. (1992). Promoter elements involved in environmental and developmental control of potato proteinase inhibitor II expression. Plant J., 2, 477–486. DOI: 10.1046/j.1365-313X.1992.t01-21-00999.x
  46. Lotan, T., Ori, N., Fluhr, R. (1989). Pathogenesis-related proteins are developmentally regulated in tobacco flowers. Plant Cell, 1, 881–887. DOI: 10.1105/tpc.1.9.881
  47. Lundborg, L., Sampedro, L., Borg-Karlson, A.K., Zas, R. (2019). Effects of methyl jasmonate on the concentration of volatile terpenes in tissues of Maritime pine and Monterey pine and its relation to pine weevil feeding. Trees, 33(1), 53. DOI: 10.1007/s00468-018-1757-1
  48. Maksymiec, W., Krupa Z. (2002). Jasmonic acid and heavy metals in Arabidopsis plants – a similar physiological response to both stressors? J. Plant Physiol., 159(5), 509–515. DOI: 10.1078/0176-1617-00610
  49. Maksymiec, W., Krupa, Z. (2007). Effects of methyl jasmonate and excess copper on root and leaf growth. Biol. Plant., 51(2), 322‒326. DOI: 10.1007/s10535-007-0062-4
  50. Miyamoto, K., Oka, M., Uheda, E., Ueda, J. (2013). Changes in metabolism of cell wall polysaccharides in oat leaves during senescence: relevance to the senescence-promoting effect of methyl jasmonate. Acta Physiol. Plant., 35, 2675–2683. DOI: 10.1007/s11738-013-1299-5
  51. Misra, R.C., Sandeep, Kamthan, M., Kumar, S., Ghosh, S. (2016). A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis. Sci. Rep., 6, 25340. DOI: 10.1038/srep25340
  52. Mohamed, H.I., Latif, H.L. (2017). Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol. Mol. Biol. Plants, 23(3), 545–556. DOI: 10.1007/s12298-017-0451-x
  53. Munemasa, S., Mori, I.C., Yoshiyuki Murata Y. (2011). Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. Plant Signal. Behav., 6(7), 939–941. DOI: 10.4161/psb.6.7.15439
  54. Munns, R., Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651–681. DOI: 10.1146/annurev.arplant.59.032607.092911
  55. Natella, F., Maldini, M., Nardini, M., Azzini, E., Foddai, M.S., Giusti, A.M., Baima, S., Morelli, G., Scaccini, C. (2016). Improvement of the nutraceutical quality of broccoli sprouts by elicitation. Food Chem., 201, 101–109. DOI: 10.1016/j.foodchem.2016.01.063
  56. Pareek, S., Benkeblia, N., Janick, J., Cao, S., Yahia, E.M. (2014). Postharvest physiology and technology of loquat (Eriobotrya japonica Lindl.) fruit. J. Sci. Food Agric., 94, 1495–1504. DOI: 10.1002/jsfa.6560
  57. Peng, Q., Su, Y., Ling, H., Ahmad, W., Gao, S., Guo, J., Que, Y., Xu, L. (2017). A sugarcane pathogenesisrelated protein, ScPR10, plays a positive role in defense responses under Sporisorium scitamineum, SrMV, SA, and MeJA stresses. Plant Cell Rep., 36(9), 1427–1440. DOI: 10.1007/s00299-017-2166-4
  58. Pluskota, W.E., Pupel, P., Głowacka, K., Okorska, S.B., Jerzmanowski, A., Nonogaki, H., Górecki, R.J. (2019). Jasmonic acid and ethylene are involved in the accumulation of osmotin in germinating tomato seeds. J. Plant Physiol., 232, 74–81. DOI: 10.1016/j.jplph.2018.11.014
  59. Preston, C.A., Laue, G., Baldwin, I.T. (2004). Plant-plant signaling: application of trans-orcis-methyl jasmonate sequivalent to sage brush releases does not elicit direct defenses in native tobacco. J. Chem. Ecol., 30, 2193– 2214. DOI: 10.1023/B:JOEC.0000048783.64264.2a
  60. Quintana-Rodriguez, E., Morales-Vargas, A.T., MolinaTorres, J., Adame-Alvarez, R.M., Jorge A. AcostaGallegos, J.A., Heil, M. (2015). Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J. Ecol., 103, 250–260. DOI: 10.1111/13652745.12340
  61. Ramirez-Estrada, K., Vidal-Limon, H., Hidalgo, D., Moyano, E., Goleniowski, M., Cusidó, R.M., Palazon, J. (2016). Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules, 21(2), 182. DOI: 10.3390/molecules21020182
  62. Reyes-Díaz, M., Lobos, T., Cardemil, L., Nunes-Nesi, A., Retamales, J., Jaakola, L., Alberdi, M., RiberaFonseca, A. (2016). Methyl jasmonate: an alternative for improving the quality and health properties of fresh fruits. Molecules, 21(6), 567. DOI: 10.3390/molecules21060567
  63. Saba, M.K., Zarei, L. (2019). Preharvest methyl jasmonate’s impact on postharvest chilling sensitivity, antioxidant activity, and pomegranate fruit quality. J. Food Biochem., e12763. DOI: 10.1111/jfbc.12763
  64. Sadeghipour, O. (2017). Amelioration of salinity tolerance in cowpea plants by seed treatment with methyl jasmonate. Legume Research, 40(6), 1100–1106. DOI: 10.18805/lr.v0i0.8394.
  65. Saito, N., Nakamura, Y., Mori, I.C., Murata, Y. (2009). Nitric oxide functions in both methyl jasmonate signaling and abscisic acid signaling in Arabidopsis guard cells. Plant Signal. Behav., 4(2), 119–120. DOI: 10.4161/psb.4.2.7537
  66. Santino, A., Taurino, M., De Domenico, S., Bonsegna, S., Poltronieri, P., Pastor, V., Flors, V. (2013). Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Rep., 32, 1085–1098. DOI: 10.1007/s00299-013-1441-2
  67. Scognamiglio, J., Jones, L., Letizia, C.S., Api, A.M. (2012). Fragrance material review on methyl jasmonate. Food Chem. Toxicol., 50, Suppl. 3, S572–S576. DOI: 10.1016/j.fct.2012.03.035
  68. Scott, E.R., Li, X., Kfoury, N., Morimoto, J., Han, W.-Y., Ahmed, S., Cash, S.B., Griffin, T.S., Stepp, J.R., Robbat, A., Orians, C.M. (2019). Interactive effects of drought severity and simulated herbivory on tea (Camellia sinensis) volatile and non-volatile metabolites. Environ. Exp. Bot., 157, 283–292. DOI: 10.1016/j.envexpbot.2018.10.025
  69. Selig, P., Keough, S., Nalam, V. J., Nachappa, P. (2016). Jasmonate-dependent plant defenses mediate soybean thrips and soybean aphid performance on soybean. Arthropod Plant Interact., 10(4), 273–282. DOI: 10.1007/s11829-016-9437-9
  70. Sembdner, G., Parthier, B. (1993). The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Physiol. Plant Mol. Biol., 44, 569–589. DOI: 10.1146/annurev.pp.44.060193.003033
  71. Senthil‐Nathan, S. (2019). Effect of methyl jasmonate (MeJA)‐induced defenses in rice against the rice leaffolder Cnaphalocrocis medinalis (Guenèe) (Lepidoptera: Pyralidae). Pest Manag. Sci., 75, 460–465. DOI: 10.1002/ps.5139
  72. Serrano, M., Martínez-Esplá, A., Zapata P.J., Castillo, S., Martínez-Romero, D., Guillén, F., Valverde, J.M., Valero, D. (2018). Effects of methyl jasmonate treatment on fruit quality properties. In: Emerging Postharvest Treatment of Fruits and Vegetables, Barman, K., Sharma, S., Siddiqui, M.W. (eds.). Apple Academic Press, Oakville, Canada, 85–106.
  73. Sheteiwy, M.S., Gong, D., Gao, Y., Pan, R., Hu, J., Guan, Y. (2018). Priming with methyl jasmonate alleviates polyethylene glycol-induced osmotic stress in rice seeds by regulating the seed metabolic profile. Environ. Exp. Bot., 153, 236–248. DOI: 10.1016/j.envexpbot.2018.06.001
  74. Sohn, H.B., Lee, H.Y., Seo, J.S., Jung, C., Jeon, J.H., Kim, J.-H., Lee, Y.W., Lee, J.S., Cheong, J.-J., Choi, Y.D. (2011). Overexpression of jasmonic acid carboxyl methyltransferase increases tuber yield and size in transgenic potato. Plant Biotechnol. Rep., 5, 27–34. DOI: 10.1007/s11816-010-0153-0
  75. Staswick, P.E. (2008). JAZing up jasmonate signaling. Trends Plant Sci., 13(2), 66–71. DOI: 10.1016/j.tplants.2007.11.011
  76. Stella de Freitas, T.F., Stout, M.J., Sant’Ana, J. (2019). Effects of exogenous methyl jasmonate and salicylic acid on rice resistance to Oebalus pugnax. Pest Manag. Sci., 75, 744–752. DOI: 10.1002/ps.5174
  77. Talebi, M., Moghaddam, M., Pirbalouti, A.G. (2018). Methyl jasmonate efects on volatile oil compounds and antioxidant activity of leaf extract of two basil cultivars under salinity stress. Acta Physiol. Plant., 40, 34. DOI: 10.1007/s11738-018-2611-1
  78. Tavallali, V., Karimi, S. (2019). Methyl jasmonate enhances salt tolerance of almond rootstocks by regulating endogenous phytohormones, antioxidant activity and gasexchange. J. Plant Physiol., 234–235, 98–105. DOI: 10.1016/j.jplph.2019.02.001
  79. Van Loon, L.C., Rep, M., Pieterse, C.M.J. (2006). Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol., 44, 135–162. DOI: 10.1146/annurev.phyto.44.070505.143425
  80. Vick, B., Zimmerman, D. (1984). Biosynthesis of jasmonic acid by several plant species. Plant Physiol., 75, 458–461.
  81. Wang, L., Guo, Z.H., Zhang, Y.B., Wang, Y.J., Yang, G., Yang, L., Wang, R.Y., Xie, Z.K. (2017). Isolation and characterization of two distinct Class II PR4 genes from the oriental lily hybrid Sorbonne. Russ. J. Plant Physiol. 64, 707. DOI: 10.1134/S1021443717050132
  82. Wang, S.Y., Chen, C.T., Wang, C.Y., Chen, P. (2007). Resveratrol content in strawberry fruit is affected by preharvest conditions. J. Agric. Food Chem., 55, 8269‒8274. DOI: 10.1021/jf071749x
  83. Wang, Y., Gao, L., Wang, Q., Zuo, J. (2019). Low temperature conditioning combined with methyl jasmonate can reduce chilling injury in bell pepper. Sci. Hortic., 243, 434‒439. DOI: 10.1016/j.scienta.2018.08.031
  84. Wasternack, C. (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot., 100(4), 681‒97. DOI: 10.1093/aob/mcm079
  85. Wasternack, C., Hause, B. (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot., 111(6), 1021‒58. DOI: 10.1093/aob/mct067
  86. Wasternack, C., Strnad, M. (2016). Jasmonate signaling in plant stress responses and development – active and inactive compounds. N. Biotechnol., 33(5), 604–613. DOI: 10.1016/j.nbt.2015.11.001
  87. Wilmowicz, E., Kućko, A., Frankowski, K., Świdziński, M., Marciniak, K., Kopcewicz, J. (2016). Methyl jasmonate-dependent senescence of cotyledons in Ipomoea nil. Acta Physiol. Plant., 38, 222. DOI: 10.1007/s11738-016-2244-1
  88. Wu, W., Ding, C., Baerson, S.R., Lian, F., Lin, X., Zhang, L., Wu, C., Hwang, S.-H., Zeng, R., Song, Y. (2019). The roles of jasmonate signalling in nitrogen uptake and allocation in rice (Oryza sativa L.). Plant Cell Environ., 42, 659–672. DOI: 10.1111/pce.13451
  89. Xiao, Y., Chen, Y., Charnikhova, T., Mulder, P.P.J., Heijmans, J., Hoogenboom, A., Agalou, A., Michel, C., Morel, J.-B., Dreni, L., Kater, M.M., Bouwmeester, H., Wang, M., Zhu, Z., Ouwerkerk, P.B.F. (2014). OsJAR1 is required for JA-regulated floret opening and anther dehiscence in rice. Plant Mol. Biol., 86, 19–33. DOI: 10.1007/s11103-014-0212-y
  90. Xie, Q., Yan, F., Hu, Z., Wei, S., Lai, J., Chen, G. (2019). Accumulation of anthocyanin and its associated gene expression in purple tumorous stem mustard (Brassica juncea var. tumida Tsen et Lee) sprouts when exposed to light, dark, sugar, and methyl jasmonate. J. Agric. Food Chem., 67, 856−866. DOI: 10.1021/acs.jafc.8b04706
  91. Xu, Q., Truong, T.T., Barrero, J.M., Jacobsen, J.V., Hocart, C.H., Gubler, F. (2016). A role for jasmonates in the release of dormancy by cold stratification in wheat. J. Exp. Bot., 67(11), 3497–3508. DOI: 10.1093/jxb/erw172
  92. Yang, N., Guo, X., Wu, Y., Hu, X., Ma, Y., Zhang, Y., Wang, H., Tang, Z. (2018). The inhibited seed germination by ABA and MeJA is associated with the disturbance of reserve utilizations in Astragalus membranaceus. J. Plant Interact., 13(1), 388–397. DOI: 10.1080/17429145.2018.1483034
  93. Yu, H., Khashaveh, A., Li, Y., Li, X., Zhang, Y. (2018). Field trapping of predaceous insects with synthetic herbivore-induced plant volatiles in cotton fields. Environ. Entomol., 47(1), 114–120. DOI: 10.1093/ee/nvx201
  94. Zeng, X., Zhou, X., Zhang, W., Murofushi, N., Kitahara, T., Kamuro, Y. (1999). Opening of rice floret in rapid response to methyl jasmonate. J. Plant Growth Regul., 18(4), 153–158. DOI: 10.1007/PL00007063
  95. Zhang, Y., Xie, Y., Xue, J., Peng, G., Wang, X. (2009). Effect of volatile emissions, especially α-pinene, from persimmon trees infested by Japanese wax scales or treated with methyl jasmonate on recruitment of ladybeetle predators. Environ. Entomol., 38(5), 1439–1445. DOI: 10.1603/022.038.0512

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 4 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.