Skip to main navigation menu Skip to main content Skip to site footer

Vol. 19 No. 5 (2020)

Articles

The INFLUENCE OF TEMPERATURE AND FUNGAL COMMUNITY ON GROWTH AND SPORULATION OF Diaporthe FROM FRUIT PLANTS

DOI: https://doi.org/10.24326/asphc.2020.5.8
Submitted: April 29, 2019
Published: 2020-10-29

Abstract

The purpose of this experiment was to determine the influence of temperature and fungi colonizing fruit plants on Diaporthe, a pathogenic fungus in Poland. The biotic series method was used to test in vitro the effects of the fungi colonizing fruit trees on isolates of Diaporthe. Among the 13 fungal species tested, six inhibited the growth and development of Diaporthe; while another two species were neutral and the rest showed the lack of limiting impact in relation to the pathogen. Fungi present in the shoots of fruit plants was able to limit the growth and development of Diaporthe spp., both in chemically-protected and non-protected orchards. Studies on the effect of temperature indicated that the optimum temperature for vegetative growth of isolates of Diaporthe ranged from 20°C to 30°C, and for conidial sporulation from 25°C to 30°C. However, the ability of Diaporthe sp. to survive at extreme temperature (–20°C and +35°C) enables their vegetative growth in climatic conditions worldwide.

References

  1. Abramczyk, B.A., Król, E.D. (2016). Use of RAPD-PCR and ITS markers for identification of Diaporthe/Phomopsis from fruit trees in south-eastern Poland. Acta Sci. Pol. Hortorum Cultus, 15(6), 161–175.
  2. Abramczyk, B.A., Król, E.D., Zalewska, E.D., Zimowska, B. (2018). Morphological characteristics and pathogenicity of Diaporthe eres isolates to the fruit tree shoots. Acta Sci Pol. Hortorum Cultus, 17(6), 125–133. DOI: 10.24326/asphc.2018.6.13
  3. Fokkema, N.J. (1993). Opportunities and problems of control of foliar pathogens with microorganisms. Pest. Sci., 37, 411–416.
  4. Gomes, R.R., Glienke, C., Videira, S.I.R., Lombard, L., Groenewald, J.Z., Crous, P.W. (2013). Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia, 31, 1–41. DOI: 10.3767/003158513X666844
  5. Gramaje, D., Agustí-Brisach, C., Pérez-Sierra, A., Moralejo, E., Olmo, D., Mostert, L., Damm, U., Armengol, J. (2012). Fungal trunk pathogens associated with wood decay of almond trees on Mallorca (Spain). Persoonia, 28, 1–13. DOI: 10.3767/003158512X626155
  6. Guarnaccia, V., Crous, P.W. (2018). Species of Diaporthe on Camellia and Citrus in the Azores. Phytopathol. Mediterr., 57(2), 307−319. DOI: 10.14601/Phytopathol_Mediterr-23254
  7. Guarnaccia, V., Groenwald, J.Z., Woodhall, J., Armengol, J., Cinelli, T., Eichmeier, A., Ezra, D., Fontaine, F., Gramaje, D., Gutierrez-Aguirregabiria, A., Kaliterna, L., Kiss, L., Larignon, P., Luque, J., Mugnai, L., Naor, V., Raposo, R., Sándor, E., Váczy, K.Z., Crous, P.W. (2018). Diaporthe diversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Persoonia, 40, 135–153. DOI: 10.3767/persoonia.2018.40.06
  8. Jacobsen, B.J., Backman, P.A. (1993). Biological and Cultural Plant Disease Controls: Alternatives and Supplements to Chemicals in IPM Systems. Plant Dis., 77, 311–315.
  9. Kanematsu, S., Kobayashi, T., Kudo, A., Ohtsu, Y. (1999). Taxonomic reassessment of the causal fungus of peach Fusicoccum canker in Japan. Ann. Phytopathol. Soc. Jap., 65, 531–536.
  10. Król, E. (2004a). Efektywność wybranych mikroorganizmów w ograniczaniu zakażania sadzonek winorośli przez Phomopsis viticola Sacc. [Effectiveness of selected microorganisms in limiting of grapevine plants infection by Phomopsis viticola Sacc.]. Acta Agrobot., 57(1–2), 109–118 [in Polish].
  11. Król, E. (2004b). Trichoderma spp. and other microorganisms in the control of Phomopsis viticola on grapevine canes. Phytopathol. Pol., 31, 25–31.
  12. Król, E., Machowicz-Stefaniak, Z. (2008). Biotic effect of fungal communities inhabiting grapevine phyllosphere on Phoma negriana. Biologia, 63/4, 466–470. DOI: 10.2478/s11756-008-0074-3
  13. Król, E.D., Abramczyk, B.A., Zalewska, E.D., Zimowska, B. (2017). Fungi inhabiting fruit tree shoots with special reference to the Diaporthe (Phomopsis) genus. Acta Sci. Pol. Hortorum Cultus, 16(4), 113–126. DOI: 10.24326/asphc.2017.4.12
  14. Kuropatwa, E. (1993). Badania wpływu temperatury i podłoża hodowlanego na wzrost i zarodnikowanie Phomopsis viticola Sacc. [Studies on the influence of temperature and culture medium on the growth and sporulation of Phomopsis viticola Sacc.]. Materiały z Sympozjum „Biotyczne środowisko uprawne a zagrożenie chorobowe roślin”, Olsztyn, 7–9 września 1993, 249–254 [in Polish].
  15. Łacicowa, B. (1989). Niektóre aspekty wykorzystania grzybów z rodzaju Trichoderma i Glocladium w biologicznej ochronie roślin [Some aspects of the use of Trichoderma and Glocladium fungi in biological plant protection]. Ochr. Rośl., 3, 8–10 [in Polish].
  16. Machowicz-Stefaniak, Z. (2009). The occurrence and biotic activity of Phomopsis diachenii Sacc. Acta Agrobot., 62(2), 125–135. DOI: 10.5586/aa.2009.034
  17. Mańka, K. (1974). Zbiorowiska grzybów jako kryterium oceny wpływu środowiska na choroby roślin [Fungus communities as a criterion for assessing the impact of the environment on plant diseases]. Zesz. Probl. Post. Nauk Rol., 160, 9–23.
  18. Mańka, M. (1995). Non-pathogenic soil fungi reflecting soil environment. In: Environmental Biotic Factors in Integrated Plant Disease Control, Mańka, M. (ed.). Proceeding of 3rd Conference of European Foundation for Plant Pathology, Poznań, Poland, September 5–9, 1994, pp. 27–36.
  19. Marin-Felix, Y., Hermández-Restrepo, M., Wingfield, M.J., Akulov, A., Camegie, A.J., Cheewangkoon, R., Gramaje, D., Groenewald, J.Z., Guamaccia, V., Halleen, F., Lombard, L., Luangsa-ard, J., Marincowitz, S., Moslemi, A., Mostert, L., Quaedvilig, W., Schumacher, R.K., Spies, C.F.J., Thangavel, R., Taylor, P.W.J., Crous, A.R. (2019). Genera of phytopathogenic fungi: GOPHY 2. Stud. Mycol., 92, 47–133. DOI: 10.1016/j.simyco.2018.04.002
  20. Oktaba, W. (1987). Metody statystyki matematycznej w doświadczalnictwie [Methods of mathematical statistics in experiments]. PAN, Warszawa, pp. 488.
  21. Papavizas, G.C. (1985). Trichoderma and Gliocladium: biology, ecology and potential for biocontrol. Annu. Rev. Phytopathol., 23, 23–54.
  22. Rhouma, A., Triki, M.A., Ouerteni, K., Mezghanni, M. (2008). Chemical and biological control of Phomopsis amygdali the causal agent of constriction canker of almond in Tunisia. Tunis J. Plant Prot., 3, 69–77.
  23. Rossman, A.Y., Adams, G.C., Cannon, P.F., Castelbury, I.A., Crous, P.W., Gryzenhout, M., Jaklitsch, W.M., Mejia, L.C., Stoykov, D., Udayanga, D., Voglmayr, H., Walker, D.M. (2015). Recommendations of generic names in Diaporthales competing for protection or use. IMA Fungus, 6, 145–154. DOI: 10.5598/imafungus.2015.06.01.09
  24. Udayanga, D., Liu, X.X., McKenzie, E.H.C., Chukeatirote, E., Bahkali, A.H., Hyde, K.D. (2011). The genus Phomopsis: biology, applications, species concepts and names of common phytopathogens. Fungal Divers., 50, 189–225. DOI: 10.1007/s13225-011- 0126-9
  25. Udayanga, D., Castlebury, L.A., Rossman, A.Y., Chukeatirote, E., Hyde, K.D. (2014). Insights into the genus Diaporthe: phylogenetic species delimitation in the D. eres species complex. Fungal Divers., 67, 203–229. DOI: 10.1007/s13225-014-0297-2
  26. Uddin, W., Stevenson, K.L., Pardo-Schultheiss, R.A. (1997). Pathogenicity of a species of Phomopsis causing a shoot blight on peach in Georgia and evaluation of possible infection courts. Plant Dis., 81, 983–989.
  27. Uecker, F.A. (1988). A world list of Phomopsis names with notes on nomenclature, morphology and biology. Mycol. Mem., 13, pp. 321.
  28. Yang, Q., Fan, X.L., Guarnaccia, V., Tian, C.M. (2018). High diversity of Diaporthe species associated with twelve new species described. MycoKeys, 39, 97–149. DOI: 10.3897/mycokeys.39.26914
  29. Zalewska, E., Machowicz-Stefaniak, Z., Król, E. (2004). The biotic effect of phyllosphere microorganisms on the some fungi pathogenic to plants. Agronomijas Vestis, 7, 155– 157.
  30. Zimowska, B. (2004). Biotic effect of phyllospheric fungi on the growth and development of Seimatosporium hypericinum (Ces.) Sutton. Electron. J. Pol. Agric. Univ., Hortic., 7(2).

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 59 60 61 62 63 64 65 66 67 68 > >> 

You may also start an advanced similarity search for this article.