Skip to main navigation menu Skip to main content Skip to site footer

Vol. 23 No. 3 (2024)

Articles

Comparative response of three tropical groundcovers to salt stress

DOI: https://doi.org/10.24326/asphc.2024.5020
Submitted: December 12, 2022
Published: 2024-06-28

Abstract

The increasing interest in cultivating groundcover plants in warm and semiarid areas requires a better understanding of the salinity effects on landscape plants. This work aimed to study the response of three groundcovers (Alternanthera dentate, Sphagneticola trilobata, and Alternanthera amoena) to high sodium chloride concentrations. The trial was conducted in the natural greenhouse environment. Plants were raised in pots filling clay-loamy soil. Hewitt’s nutrient solution containing 0, 25, 50, 75, and 100 mM NaCl irrigated the plants. Plant growth, antioxidative enzyme activity, and the relative water content (RWC), proline, sodium, potassium, and chloride were determined. The study indicated that increasing NaCl concentration in the nutrient solution led to: a) significant differences in the fresh weight of shoots among salinity treatments and among species; b) increased root growth with increasing salinity stress up to the mild stress level of 25 mM NaCl, however at different rates with three species; c) reduced RWC of the leaves of three species grown under salinity-induced stress; d) the increased proline content of the leaves, and more pronounced increases with A. dentate and A. amoena from 0 to 50 mM NaCl, and with S. trilobata from 0 to 100 mM NaCl; e) significant changes in the activities of antioxidative enzymes including superoxide dismutase, peroxidase, and catalase; f) significant decrease of the K+/Na+ ratio along with increase of salinity stress; g) increased ratio of leaf/ root content of Cl in A. dentate and in particular, A. amoena; h) a significant reduction in visual qualities of all examined plants. Therefore, because of its ability to maintain leaf characteristics, visual quality, and salt-tolerance mechanisms even under high salinity, S. trilobata can be considered for urban landscaping projects in semiarid and saline areas where low-quality water is used for irrigation.

References

  1. Acosta-Motos, J.R., Ortuno, M.F., Alvarez, S., Lopez-Climent, M.F., Gomez-Cadenas, A., Sánchez-Blanco, M.J. (2016). Changes in growth, physiological parameters and the hormonal status of Myrtus communis L. plants irrigated with water with different chemical compositions. J. Plant Physiol., 191, 12–21. https://doi.org/10.1016/j.jplph.2015.11.010 DOI: https://doi.org/10.1016/j.jplph.2015.11.010
  2. Aebi, H., Lester, P. (1984). Catalase in vitro. Meth. Enzymol., 105, 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3 DOI: https://doi.org/10.1016/S0076-6879(84)05016-3
  3. Alvarez, S., Sánchez-Blanco, M.J. (2014). Long-term effect of salinity on plant quality, water relations, photosynthetic parameters and ion distribution in Callistemon citrinus. Plant Biol., 1, 757–764. https://doi.org/10.1111/plb.12106 DOI: https://doi.org/10.1111/plb.12106
  4. Bates, L.S., Waklren, R.P., Teare, I.D. (1973). Rapid determination of free proline water stress studies. Plant Soil, 39, 205–207. http://dx.doi.org/10.1007/BF00018060 DOI: https://doi.org/10.1007/BF00018060
  5. Beauchamp, C., Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem., 44, 276–287. https://doi.org/10.1016/0003-2697(71)90370-8 DOI: https://doi.org/10.1016/0003-2697(71)90370-8
  6. Bolanos, J.A., Longstreth, D.J. (1984). Salinity effects on water potential components and bulk elastic modulus of Alternanthera philoxeroides (Mart.) Griseb. Plant Physiol., 75, 281–284. https://doi.org/10.1104/pp.75.2.281 DOI: https://doi.org/10.1104/pp.75.2.281
  7. Cai, X., Niu, G., Starman, T., Hall, Ch. (2014). Response of six garden roses (Rosa x hybrida L.) to salt stress. Sci. Hortic., 168, 27–32. http://dx.doi.org/10.1016/j.scienta.2013.12.032 DOI: https://doi.org/10.1016/j.scienta.2013.12.032
  8. Carillo, P., Cirillo, C., De Micco, V., Arena, C., De Pascale, S., Rouphael, Y. (2019). Morpho-anatomical, physiological and biochemical adaptive responses to saline water of Bougainvillea spectabilis Willd. trained to different canopy shapes. Agric. Water Manag., 212, 12–22. https://doi.org/10.1016/j.agwat.2018.08.037 DOI: https://doi.org/10.1016/j.agwat.2018.08.037
  9. Cassaniti, C., Leonardi, Ch., Flowers, T.J. (2009). The effects of sodium chloride on ornamental shrubs. Scientia Hort., 122, 586–593. https://doi.org/10.1016/j.scienta.2009.06.032 DOI: https://doi.org/10.1016/j.scienta.2009.06.032
  10. Chance, B., Maehly, A.C. (1995). Assay of catalase and peroxidases. Meth. Enzymol., 2, 764–775. https://doi.org/10.1002/9780470110171.ch14 DOI: https://doi.org/10.1016/S0076-6879(55)02300-8
  11. Charles, J.B., Henning, R., Nicolas, S., Dirk, R., Kiran, R.P., Jens, N., Joachim, S., Liu, J., Alisdair, R.F., Lee, J.S. (2007). The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiol., 143, 312–325. https://doi.org/10.1104/pp.106.090431 DOI: https://doi.org/10.1104/pp.106.090431
  12. Don, K.K.G., Xia, Y.P., Zhu, Z., Le, C., Wijeratne, A.W. (2010). Some deleterious effects of long-term salt stress on growth nutrition, and physiology of Gerbera (Gerbera jamesonii L.) and potential indicators of its salt tolerance. J. of Plant Nutr., 33, 20–27. https://doi.org/10.1080/01904167.2010.512058 DOI: https://doi.org/10.1080/01904167.2010.512058
  13. Fucina, G., Rocha, L.W., da Silva, G.F., Hoepers, S.M., Ferreira, F.P., Guaratini, T., Cechinel Filho, V., Lucinda-Silva, R.M., Quintão, N.L.M., Bresolin, T.M.B. (2016). Topical anti-inflammatory phytomedicine based on Sphagneticola trilobata dried extracts. Pharm. Biol., 54, 2465–2474. https://doi.org/10.3109/13880209.2016.1160249 DOI: https://doi.org/10.3109/13880209.2016.1160249
  14. Garcia-Caparros, P., Llanderal, A., Pestana, M., Correia, P.J., Lao, M.T. (2016). Tolerance mechanisms of three potted ornamental plants grown under moderate salinity. Sci. Hortic., 201, 84–91. http://dx.doi.org/10.1016/j.scienta.2016.01.031 DOI: https://doi.org/10.1016/j.scienta.2016.01.031
  15. Hai Jing, S., Shu Feng, W., Yi Tai, C. (2009). Effects of salt stress on growth and physiological index of 6 tree species. For. Res., 22, 315–324. https://doi.org/10.3389%2Ffpls.2022.999058
  16. Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S.E., Shabala, S. (2011). Ionic and osmotic relations in quinoa (Chenopodium quinoa willd) plants grown at various salinity levels. J. Exp. Bot., 62, 185–193. https://doi.org/10.1093/jxb/erq257 DOI: https://doi.org/10.1093/jxb/erq257
  17. Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J. (2000). Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol., 51, 463–499. https://doi.org/10.1146/annurev.arplant.51.1.463 DOI: https://doi.org/10.1146/annurev.arplant.51.1.463
  18. Hasheminasab, H., Aliakbari, A., Baniasadi, R. (2014). Optimizing the relative water protection (RWP) as novel approach for monitoring drought tolerance in Iranian pistachio cultivars using graphical analysis. Int. J. Biosci., 4, 194–203. DOI: https://doi.org/10.12692/ijb/4.1.194-204
  19. Hernandez, J.A., Campillo, A., Jimenez, A., Alacon, J.J., Sevilla, F. (1999). Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytol. J., 141, 241–251. https://doi.org/10.1046/j.1469-8137.1999.00341.x DOI: https://doi.org/10.1046/j.1469-8137.1999.00341.x
  20. Hewitt, E.J. (1966). Sand and water culture methods used in the study of plant nutrition. Commonwealth Agricultural Bureaux, Farnham Royal, Bucks, England, 547.
  21. Irfan Qureshi, M., Israr, M., Abdin, M.Z., Iqbal, M. (2005). Responses of Artemisia annua L. to lead and salt-induced oxidative stress. Environ. Exp. Bot., 53, 185–193. https://doi.org/10.1016/j.envexpbot.2004.03.014 DOI: https://doi.org/10.1016/j.envexpbot.2004.03.014
  22. Kibria, M.G., Hossain, M., Murata, Y., Hoque, A. (2017). Antioxidant defense mechanisms of salinity tolerance in rice genotypes. Rice Sci., 24, 155–162. https://doi.org/10.1016/j.rsci.2017.05.001 DOI: https://doi.org/10.1016/j.rsci.2017.05.001
  23. Khalid, K.A., Cai, W. (2011). The effects of mannitol and salinity stresses on growth and biochemical accumulations in lemon balm. Acta Ecol. Sin., 31, 112–120. https://doi.org/10.1016/j.chnaes.2011.01.001 DOI: https://doi.org/10.1016/j.chnaes.2011.01.001
  24. Kumar, S., Singh, P., Mishra, G., Srivastav, S., Jha, K.K., Khosa, R.L. (2011). Phytopharmacological review of Alternanthera brasiliana (Amaranthaceae). Asian J. Plant Sci. Res., 1, 41–47.
  25. Kumar, M., Kumar, R., Jain, V., Jain, S. (2018). Differential behavior of the antioxidant system in response to salinity induced oxidative stress in salt tolerant and salt-sensitive cultivars of Brassica juncea L. Biocatal. Agric. Biotech., 13, 12–19. https://doi.org/10.1016/j.bcab.2017.11.003 DOI: https://doi.org/10.1016/j.bcab.2017.11.003
  26. Lachica, M., Aguilar, A., Yanez, J. (1973). Análisis foliar, métodos utilizados en laestación experimental del zaidín. Anal. Edafol. Agrobiol., 32, 1033–1047.
  27. McFarland, M.L., Ueckert, D.N., Hartmann, S., Hons, F.M. (1990). Transplanting shrubs for revegetation of salt-affected soils. Landsc. Urban Plan., 19(4), 377–381. https://doi.org/10.1016/0169-2046(90)90043-2 DOI: https://doi.org/10.1016/0169-2046(90)90043-2
  28. Niu, G., Rodriguez, D.S., Aguiniga, L. (2008). Effect of saline water irrigation on growth and physiological responses of three rose rootstocks. HortSci. 43, 1479–1484. https://doi.org/10.21273/HORTSCI.43.5.1479 DOI: https://doi.org/10.21273/HORTSCI.43.5.1479
  29. Paludan-Müller, G., Saxe, H., Bo Pedersen, L., Barfoed, T.H. (2002). Differences in salt sensitivity of four deciduous tree species to soil or airborne salt. Physiol. Plant., 114, 223–230. https://doi.org/10.1034/j.1399-3054.2002.1140208.x DOI: https://doi.org/10.1034/j.1399-3054.2002.1140208.x
  30. Patel, A.D., Bhensdadia, H., Pandey, A.N. (2009). Effect of salinisation of soil on growth, water status and general nutrient accumulation in seedlings of Delonix regia (Fabaceae). Acta Ecol. Sin., 29, 109–115. https://doi.org/10.1016/j.chnaes.2009.05.005 DOI: https://doi.org/10.1016/j.chnaes.2009.05.005
  31. Rai, K., Kalia, R.K., Singh, R., Gangola, P., Dhawan, A. (2011). Developing stress tolerant plants through in vitro selection an overview of the recent progress. Environ. Exp. Bot., 71(1), 89–98. https://doi.org/10.1016/j.envexpbot.2010.10.021 DOI: https://doi.org/10.1016/j.envexpbot.2010.10.021
  32. Rouphael, Y., De Micco, V., Arena, C., Raimondi, G., Colla, G., De Pascale, S. (2017). Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange, and leaf anatomy of zucchini squash grown under saline conditions. J. Appl. Phycol., 29, 459–470. DOI: https://doi.org/10.1007/s10811-016-0937-x
  33. Salehi Salmi, M.R., Salehi, H. (2013). Comparison of tall fescue (Festuca arundinacea Schreb.) and common bermudagrass (Cynodon dactylon [L.] Pers.) turfgrasses and their seed mixtures. Adv. Hortic. Sci., 27(1), 81–87.
  34. Schonfeld, M.A., Johnson, R.C., Carwer, B.F., Mornhinweg, D.W. (1988). Water relations in winter wheat as drought resistance indicators. Crop Sci., 28, 526–531. DOI: https://doi.org/10.2135/cropsci1988.0011183X002800030021x
  35. Sera, B. (2017). Salt-tolerant trees usable for Central European cities. Hortic. Sci., 44(1), 43–48. https://doi.org/10.17221/201/2015-HORTSCI DOI: https://doi.org/10.17221/201/2015-HORTSCI
  36. Slama, I., Ghnaya, T., Messedi, D., Hessini, K., Labidi, N., Savoure, A., Abdelly, C. (2007). Effect of sodium chloride on the response of the halophyte species Sesuvium portulacastrum grown in mannitol-induced water stress. J. Plant Res., 120(2), 291–299. https://doi.org/10.1007/s10265-006-0056-x DOI: https://doi.org/10.1007/s10265-006-0056-x
  37. Sucre, B., Suárez, N. (2011). Effect of salinity and PEG-induced water stress on water status, gas exchange, solute accumulation, and leaf growth in Ipomoea pes-caprae. Environ. Exp. Bot., 70(2–3), 192–203. https://doi.org/10.1016/j.envexpbot.2010.09.004 DOI: https://doi.org/10.1016/j.envexpbot.2010.09.004
  38. Tavakkoli, E., Rengasamy, P., McDonald, G.K. (2010). High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J. Exp. Bot. 61(!5), 4449–4459. https://doi.org/10.1093/jxb/erq251 DOI: https://doi.org/10.1093/jxb/erq251
  39. Wahome, P.K. (2000). Effect of NaCl on the vegetative growth and flower quality of roses. J. Appl. Bot., 74(1), 38–41.
  40. Wang, Y., Jia, D., Guo, J., Zhang, X., Guo, C., Yang, Z. (2017). Antioxidant metabolism variation associated with salt tolerance of six maize (Zea mays L.) cultivars. Acta Ecol. Sin., 37(6), 368–372. https://doi.org/10.1016/j.chnaes.2017.08.007 DOI: https://doi.org/10.1016/j.chnaes.2017.08.007
  41. Zhao, Z., Zhang, G., Zhou, S., Ren, Y., Wang, W. (2017). The improvement of salt tolerance in transgenic tobacco by overexpression of wheat F-box gene TaFBA1. Plant Sci., 259, 71–85. https://doi.org/10.1016/j.plantsci.2017.03.010 DOI: https://doi.org/10.1016/j.plantsci.2017.03.010

Downloads

Download data is not yet available.

Similar Articles

<< < 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.