Skip to main navigation menu Skip to main content Skip to site footer

Vol. 23 No. 1 (2024)

Articles

Mutual effects of humic acid content and nitrogen sources for vegetative development and flowering of snapdragon (Antirrhinum majus L.)

DOI: https://doi.org/10.24326/asphc.2024.5180
Submitted: May 17, 2023
Published: 2024-02-29

Abstract

Snapdragon (Antirrhinum majus L.), a garden plant cherished for its unique and colorful flowers, is widely used in bouquets and wreaths as a cut flower. The purpose of this study is to examine the effects of nitrogen sources (ammonium sulfate, AS; ammonium nitrate, AN; and urea) and humic acids from lignite sources (TKI-Humas and HUM-Zn) on the growth and flower production of snapdragon that are grown in pots under controlled conditions. It has been observed that plants started to flower during applications of HUM-Zn with AN and urea, whereas they remained at the vegetative stage during the application of HUM-Zn with AS. Furthermore, it has been determined that the two humic acid sources with AS usage prolonged the vegetative development and did not induce flowering of plants. Simultaneous application of humic acid and nitrogen sources has caused an increase in the leaf width, peduncle diameter, floret weight, chlorophyll content, and biomass of the snapdragon. Results show that the application of HUM-Zn with AN and urea has been effective on the plant’s vegetative organs, flowering, and dry weight. It indicated that HUM-Zn contains zinc, which is effective in flowering and biomass development. In conclusion, it was concluded that the simultaneous application of humic acid with AN or urea rapidly affected the flowering process of snapdragon.

References

  1. Abdulhadi, M.D., Saeed, A.K.J.M., Haraz, M.T. (2022). Effect of chelated calcium and iron foliar spraying on growth and flowering of snapdragon (Antirrhinum majus L.). Int. J. Health Sci. Res. 6(S3), 10329–10336. https://doi.org/10.53730/ijhs.v6nS3.9425 DOI: https://doi.org/10.53730/ijhs.v6nS3.9425
  2. Adesemoye, A.O, Obini, M., Ugoji, E.O. (2008). Comparison of plant growth promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Braz. J. Microbiol. 39(3), 423–426. https://doi.org/10.1590/S1517-83822008000300003 DOI: https://doi.org/10.1590/S1517-83822008000300003
  3. Alloway, B.J. (2008). Zinc in soils and crop nutrition. 2nd ed. International Zinc Association, Brussels, International Fertilizer Industry Association, Paris.
  4. Ampong, K., Thilakaranthna, M.S., Gorim, L.Y. (2022). Understanding the role of humic acids on crop performance and soil health. Front. Agron. 4, 1–14. https://doi.org/10.3389/fagro.2022.848621 DOI: https://doi.org/10.3389/fagro.2022.848621
  5. Aslan, S., Sarıhan, E.O. (2021). [The effect of humic acid and nitrogen fertilizer applications on some yield and quality features of lavender (Lavandula angustifolia Mill.)]. MKU J. Agric. Sci. 26, 29–40. In Turkish. https://doi.org/10.37908/mkutbd.783161 DOI: https://doi.org/10.37908/mkutbd.783161
  6. Atafar, Z.A., Mesdaghinia, J., Nouri, M., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., Mahvi, A.H. (2010). Effect of fertilizer application on soil heavy metal concentration. Environ. Monit. Assess. 160, 83–89. https://doi.org/10.1007/s10661-008-0659-x DOI: https://doi.org/10.1007/s10661-008-0659-x
  7. Aulakh, M.S., Grant, C.A. (2008). Integrated nutrient management for sustainable crop production. CRC Press, 25–39. https://doi.org/10.1201/9780367803216 DOI: https://doi.org/10.1201/9780367803216
  8. Bernstein, N., Ioffe, M., Bruner, M., Nishri, Y., Luria, G., Dori, I., Matan, E., Philosoph-Hadas, S., Umiel, N., Hagiladi, A. (2005). Effects of supplied nitrogen form and quantity on growth and postharvest quality of Ranunculus asiaticus flowers. HortScience 40(6), 1879–1886. https://doi.org/10.21273/HORTSCI.40.6.1879 DOI: https://doi.org/10.21273/HORTSCI.40.6.1879
  9. Boguta, P., Skic, K., Sokołowska, Z., Frąc, M., Sas-Paszt, L. (2021). Chemical transformation of humic acid molecules under the influence of mineral, fungal and bacterial fertilization in the context of the agricultural use of degraded soils. Molecules 26(16), 4921. https://doi.org/10.3390/molecules26164921 DOI: https://doi.org/10.3390/molecules26164921
  10. Bouyoucos, G. (1962). Hydrometer method improved for making particle size analysis of soils. Agron. J. 54(5), 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x DOI: https://doi.org/10.2134/agronj1962.00021962005400050028x
  11. Delfine, S., Tognetti, R., Desiderio, E., Alvino, A. (2005). Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agron. Sustain. Dev. 25(2), 183–191. https://doi.org/10.1051/agro:2005017 DOI: https://doi.org/10.1051/agro:2005017
  12. Delgado, V.F., Lopez, O.P., Gonzalez, E.A. (1998). Effect of sunlight illumination on marigold flowers meals and egg yolk pigmentation. J. Agric. Food Chem. 46(2), 698–706. https://doi.org/10.1021/jf9702454 DOI: https://doi.org/10.1021/jf9702454
  13. Dong, L., Córdova-Kreylos, A.L., Yang, J., Yuan, H., Scow, K.M. (2009). Humic acids buffer the effects of urea on soil ammonia oxidizers and potential nitrification. Soil Biol. Biochem. 41(8), 1612–1621. https://doi.org/10.1016/j.soilbio.2009.04.023 DOI: https://doi.org/10.1016/j.soilbio.2009.04.023
  14. Dong, L.H., Yuan, Q., Yuan, H.L. (2006). Changes of chemical properties of humic acids from crude and fungal transformed lignite. Fuel 85(17–18), 2402–2407. https://doi.org/10.1016/j.fuel.2006.05.027 DOI: https://doi.org/10.1016/j.fuel.2006.05.027
  15. Dudley, J.B., Pertuit, A.J., Toler, J.E. (2004). Leonardite influences zinnia and marigold growth. HortSci. 39(2), 251–255. https://doi.org/10.21273/HORTSCI.39.2.251 DOI: https://doi.org/10.21273/HORTSCI.39.2.251
  16. Erisman, J.W., Sutton, M.A., Galloway, J., Klimont, Z., Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. Nat. Geosci 1, 636–639. https://doi.org/10.1038/ngeo325 DOI: https://doi.org/10.1038/ngeo325
  17. Esringü, A., Sezen, I., Aytatlı, B., Ercişli, S. (2015). Effect of humic and fulvic acid application on growth parameters in Impatiens walleriana L. Acad. J. Agri. 4(1), 37–42.
  18. Fageria, N.K., Baligar, V.C. (2005). Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 88, 97–185. https://doi.org/10.1016/S0065-2113(05)88004-6 DOI: https://doi.org/10.1016/S0065-2113(05)88004-6
  19. Garcia-Mina, J.M., Antolin, M.C., Sanchez-Diaz, M. (2004). Metal-humic complexes and plant micronutrient uptake: A study based on different plant species cultivated in diverse soil types. Plant Soil 258, 57–68. https://doi.org/10.1023/B:PLSO.0000016509.56780.40 DOI: https://doi.org/10.1023/B:PLSO.0000016509.56780.40
  20. Haj Seyed Hadi, M.R., Abarghooei Fallah, M., Darzi, M.T. (2015). Influence of nitrogen fertilizer and vermicompost application on flower yield and essential oil of chamomile (Matricaria chamomile L.). J. Chem. Health Risks 5(3), 235–244. https://doi.org/10.22034/jchr.2015.544111
  21. Hatami, H. (2017). The effect of zinc and humic acid applications on yield and yield components of sunflower in drought stress. J. Adv. Agric. Technol. 4(1). https://doi.org/10.18178/joaat.4.1.36-39 DOI: https://doi.org/10.18178/joaat.4.1.36-39
  22. Ibrahim, E.A., Ramadan, W.A. (2015). Effect of zinc foliar spray alone and combined with humic acid or/and chitosan on growth, nutrient elements content and yield of dry bean (Phaseolus vulgaris L.) plants sown at different dates. Sci. Hortic. 184, 101–105. https://doi.org/10.1016/j.scienta.2014.11.010 DOI: https://doi.org/10.1016/j.scienta.2014.11.010
  23. Ji, C., Li, J., Jiang, C., Zhang, L., Shi, L., Xu, F., Cai, H. (2022). Zinc and nitrogen synergistic act on root-toshoot translocation and preferential distribution in rice. J. Adv. Res. 35, 187–198. https://doi.org/10.1016/j.jare.2021.04.005 DOI: https://doi.org/10.1016/j.jare.2021.04.005
  24. Kacar, B. (1972). [Chemical analysis of plant and soil]. Ankara Unı Fac of Agric Public 453, A.U. Publisher, Ankara. In Turkish.
  25. Kutlu, I., Gulmezoglu, N. (2020). Morpho-agronomic characters of oat growing with humic acid and zinc application in different sowing times. Plant Sci. Today 7(4), 594–600. https://doi.org/10.14719/pst.2020.7.4.861 DOI: https://doi.org/10.14719/pst.2020.7.4.861
  26. Kutlu, I., Gulmezoglu, N. (2023). Suitable humic acid application methods to maintain physiological and enzymatic properties of bean plants under salt stress. Gesunde Pflanzen 75, 1075–1086. https://doi.org/10.1007/s10343-022-00766-4 DOI: https://doi.org/10.1007/s10343-022-00766-4
  27. Lana, M.D.C., Dartora, J., Marini, D., Hann, J.E. (2012). Inoculation with Azospirillum, associated with nitrogen fertilization in maize. Rev. Ceres 59(3), 399–405. https://doi.org/10.1590/S0034-737X2012000300016 DOI: https://doi.org/10.1590/S0034-737X2012000300016
  28. Leite, J.M., Arachchige, P.S.P., Ciampitti, I.A., Hettiarachchi, G.M., Maurmann, L., Trivelin, P.C., Prasad, P.V.V., Sunoj, S.J. (2020). Co-addition of humic substances and humic acids with urea enhances foliar nitrogen use efficiency in sugarcane (Saccharum officinarum L.). Heliyon 6(10), e05100. https://doi.org/10.1016/j.heliyon.2020.e05100 DOI: https://doi.org/10.1016/j.heliyon.2020.e05100
  29. Li, B., Xin, W., Sun, S., Shen, Q., Xu, G. (2006). Physiological and molecular responses of nitrogen-starved rice plants to re-supply of different nitrogen sources. Plant Soil 287, 145–159. https://doi.org/10.1007/s11104-006-9051-1 DOI: https://doi.org/10.1007/s11104-006-9051-1
  30. Liberal, I.M., Burrus, M., Suchet, C., Thébaud, C., Vargas, P. (2014). The evolutionary history of Antirrhinum in the Pyrenees inferred from phylogeographic analyses. BMC Evol. Biol. 14, 146. https://doi.org/10.1186/1471-2148-14-146 DOI: https://doi.org/10.1186/1471-2148-14-146
  31. Lindsay, W.L., Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42(3), 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x DOI: https://doi.org/10.2136/sssaj1978.03615995004200030009x
  32. Liu, X.J., Zhang, Y., Han, W.X., Tang, A.H., Shen, J.L., Cui, Z.L., Vitousek, P., Erisman, J.W., Goulding, K., Christie, P., Fangmeier, A., Zhang, F.S. (2013). Enhanced nitrogen deposition over China. Nature 494, 459–462. https://doi.org/10.1038/nature11917 DOI: https://doi.org/10.1038/nature11917
  33. Luo, L., Zhang, Y., Xu, G. (2020). How does nitrogen shape plant architecture? J. Exp. Bot. 71(15), 4415–4427. https://doi.org/10.1093/jxb/eraa187 DOI: https://doi.org/10.1093/jxb/eraa187
  34. Memon, S.A., Khetran, K. (2014). Effect of humic acid and calcium chloride on the growth and flower production of Snapdragon (Antirrhinum majus L.). J. Agric. 10(6), 1549–1561.
  35. Mohamed, N.A.A., Elagabain, S.A. (2021). Response of Snapdragon (Antirrhinum majus Coronette F1) to compost amendment and foliar fertilization. Sudan J. Des. Res. 13(1), 57–70.
  36. Mohammadipour, E., Golchin, A., Mohammadi, J., Negahdar, N., Zarchini, M. (2012). Effect of humic acid on yield and quality of marigold (Calendula officinalis L.). Ann. Biol. Res. 3(11), 5095–5098.
  37. Nelson, D.W., Sommers, L. (1983). Total carbon, organic carbon and organic matter. In: Methods of soil analysis.Part 2. Chemical and microbiological properties, A.L. Page (ed.). Book Series Agronomy Monographs, 539–579. https://doi.org/10.2134/agronmonogr9.2.2ed.c29 DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c29
  38. Nelson, R.E. (1983). Carbonate and gypsum. In: Methods of soil analysis. Part 2. Chemical and microbiological properties, A.L. Page (ed.). Book Series Agronomy Monographs, 181–196. https://doi.org/10.2134/agronmonogr9.2.2ed.c11 DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c11
  39. Nikbakht, A., Kafi, M., Babalar, M., Xia, Y.P., Luo, A., Etemadi, N.A. (2008). Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. J. Plant Nutr. 31(12), 2155–2167. https://doi. org/10.1080/01904160802462819 DOI: https://doi.org/10.1080/01904160802462819
  40. Olsen, S.R., Dean, L.A. (1965). Phosphorus. In: Chemical and microbiological properties. Methods of soil analysis, part 2, 1035–1048. DOI: https://doi.org/10.2134/agronmonogr9.2.c22
  41. Ozkutlu, F., Torun, B., Cakmak, I. (2006). Effect of zinc humate on growth of soybean and wheat in zinc deficient calcareous soil. Commun. Soil Sci. Plant Anal. 37(1520), 2769–2778. https://doi.org/10.1080/00103620600832167 DOI: https://doi.org/10.1080/00103620600832167
  42. Peoples, M.B., Craswell, E.T. (1992). Biological nitrogen fixation: investments, expectations and actual contributions to agriculture. Plant Soil 141, 13–39. https://doi.org/10.1007/BF00011308 DOI: https://doi.org/10.1007/978-94-017-0910-1_2
  43. Pratt P.F. (1965). Potassium. Chemical and microbiological properties. Methods of soil analysis, Part 2, 1022–1030. DOI: https://doi.org/10.2134/agronmonogr9.2.c20
  44. Quaggiotti, S., Ruperti, B., Pizzeghello, D., Francioso, O., Tugnoli, V., Nardi, S. (2004). Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). J. Exp. Bot. 55(398), 803–813. https://doi.org/10.1093/jxb/erh085 DOI: https://doi.org/10.1093/jxb/erh085
  45. Silva Júnior, J.M. da, Rodrigues, M., Castro, E.M. de, Bertolucci, S.K.V., Pasqual, M. (2013). Changes in anatomy and chlorophyll synthesis in orchids propagated in vitro in the presence of urea. Acta Sci. Agron. 35(1), 65–72. https://doi.org/10.4025/actasciagron.v35i1.15356 DOI: https://doi.org/10.4025/actasciagron.v35i1.15356
  46. Verma, S., Kumar, A., Dwivedi, A.K. (2019). Studies on effect of nitrogen and phosphorus on the performance of snapdragon (Antirrhinum majus L.): A review. J. Pharmacogn. Phytochem. 8(4), 2571–2575.
  47. Wilkinson, S., Weston, A.K., Marks, D.J. (2020). Stabilising urea amine nitrogen increases potato tuber yield by increasing chlorophyll content, reducing shoot growth rate and increasing biomass partitioning to roots and tubers. Potato Res. 63, 217–239. https://doi.org/10.1007/s11540-019-09436-x DOI: https://doi.org/10.1007/s11540-019-09436-x
  48. Ye, L., Zhao, X., Bao, E., Li, J., Zou, Z., Cao, K. (2020). Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 10(1), 1–11. https://doi.org/10.1038/s41598-019-56954-2 DOI: https://doi.org/10.1038/s41598-019-56954-2
  49. Zhang, S.Q., Yuan, L., Li, W., Lin, Z.A., Li, Y.T., Hu, S.W., Zhao, B.Q. (2019). Effects of urea enhanced with different weathered coal-derived humic acid components on maize yield and fate of fertilizer nitrogen. J. Integr. Agric. 18(3), 656–666. https://doi.org/10.1016/S2095-3119(18)61950-1 DOI: https://doi.org/10.1016/S2095-3119(18)61950-1
  50. Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R.A., Gerstein, M., Snyder, M. (2001). Global analysis of protein activities using proteome chips. Science 293(5537), 2101–2105. https://doi.org/10.1126/science.1062191 DOI: https://doi.org/10.1126/science.1062191

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.