Skip to main navigation menu Skip to main content Skip to site footer

Vol. 22 No. 6 (2023)

Articles

Impact of organic and conventional cultivation on seed quality of two soya bean varieties sown at different row spacings

DOI: https://doi.org/10.24326/asphc.2023.5186
Submitted: May 22, 2023
Published: 2023-12-22

Abstract

Soya bean (Glycine max (L.) Merr.) is a legume valued for, among other things, the high nutritional value of its seeds, which contain around 40% protein with an excellent amino acid composition and a significant fat content. The study aimed to evaluate the protein, fat, fibre and amino acids content of the seeds of two soya bean varieties sown at different row spacings under organic and conventional growing conditions. The study showed that the conventional method of production has a more favourable effect on the soya bean’s protein content and the most amino acids, primarily essential amino acids. In organic cultivation, soya bean seeds were characterised by a higher content of fat and sulphur amino acids (methionine and cysteine). The research carried out indicates that the seeds of the Aldana variety, compared to the Merlin variety, have greater nutritional importance to humans due to a higher content of protein and almost all amino acids, including essential amino acids. Only a higher content of seed fat and tryptophan was evidenced in the Merlin variety. Row spacing did not significantly differentiate the assessed soya bean seed quality parameters. Only the amount of methionine was significantly higher when soya beans were grown at a narrower row spacing (22.5 cm).

References

  1. Abbasi Surki, A., Sharifzade, F., Tavakkol Afshari, R., Majnoun Hosseini, N., Gazor, H.R., (2010). Optimization of processing parameters of soybean seeds dried in a constant-bed dryer using response surface methodology. J. Agric. Sci. Technol., 12(4), 409–423. https://www.researchgate.net/publication/266010878
  2. Abdel-Wahab, S.I., Abdel-Wahab, E.I. (2020). Competitive and facilitative effects of intercropping some soybean varieties with corn under different soybean plant densities. Plant Arch, 20(2), 1631–1639.
  3. Acikgoz, E., Sincik, M., Karasu, A., Tongel, O., Wietgrefe, G., Bilgili, U., Oz, M., Albayrak, S., Turan, Z.M., Goksoy, A.T. (2009). Forage soybean production for seed in mediterranean environments. Field Crops Res., 110(3), 213–218. https://doi.org/10.1016/j.fcr.2008.08.006 DOI: https://doi.org/10.1016/j.fcr.2008.08.006
  4. Bellaloui, N., McClure, A.M., Mengistu, A., Abbas, H.K. (2020). The influence of agricultural practices, the environment, and cultivar differences on soybean seed protein, oil, sugars, and amino acids. Plants, 9(3), 378. https://doi.org/10.3390/plants9030378 DOI: https://doi.org/10.3390/plants9030378
  5. Biel, W., Gawęda, D., Łysoń, E., Hury, G. (2017). Wpływ czynników genetycznych i agrotechnicznych na wartość odżywczą nasion soi [The effect of variety and agrotechnical factors on nutritive value of soybean seeds]. Acta Agrophys., 24(3), 395–404.
  6. Biletska, J., Semeniuk, A., Perepelycja, A. (2020). Research of the influence of soybean germination on changes in the amino acid composition and the content of phytic acid. Technol. Audit Prod. Reserves., 2(3), 35–37. http://doi.org/10.15587/2312-8372.2020.199524 DOI: https://doi.org/10.15587/2312-8372.2020.199524
  7. Cox, W.J., Hanchar, J.J., Cherney, J. (2018). Agronomic and economic performance of maize, soybean, and wheat in different rotations during the transition to an organic cropping system. Agronomy, 8(9), 192. https://doi.org/10.3390/agronomy8090192 DOI: https://doi.org/10.3390/agronomy8090192
  8. Ćustić, M.H., Horvatić, M., Butorac, A. (2002). Effects of nitrogen fertilization upon the content of essential amino acids in head chicory (Cichorium intybus L. var. foliosum). Sci. Hort. Scientia Hortic., 92(3–4), 205–215. https://doi.org/10.1016/S0304-4238(01)00303-X DOI: https://doi.org/10.1016/S0304-4238(01)00303-X
  9. Goldflus, F., Ceccantini, M., Santos, W. (2006). Amino acid content of soybean samples collected in different Brazilian states: harvest 2003/2004. Rev. Bras. Cienc. Avic., 8(2), 105–111. DOI: https://doi.org/10.1590/S1516-635X2006000200006
  10. Guo, B., Sun, L., Jiang S., Ren, H., Sun R., Wei, Z., Hong, H., Luan, X., Wang, J., Wang, X., Xu, D., Li, W., Guo C., Qiu LJ. (2022). Soybean genetic resources contributing to sustainable protein production. Theor. Appl. Genet., 135(11), 4095–4121. https://doi.org/10.1007/s00122-022-04222-9 DOI: https://doi.org/10.1007/s00122-022-04222-9
  11. Jarecki, W., Bobrecka-Jamro, D. (2015). Effect of fertilization with nitrogen and seed inoculation with nitragina on seed quality of soya bean (Glycine max (L.) Merrill). Acta Sci. Pol. Agricultura, 14(3), 51–59.
  12. Jaureguy, L.M., Rodriguez, F.L., Zhang, L., Chen, P., Brye, K., Oosterhuis, D. Mauromoustakos, A., Clark, J.R. (2013). Planting date and delayed harvest effects on soybean seed composition. Crop Sci., 453(5), 2162–2175. https://doi.org/10.2135/cropsci2012.12.0683 DOI: https://doi.org/10.2135/cropsci2012.12.0683
  13. Kraska, P., Andruszczak, S., Gierasimiuk, P., Chojnacka, S. (2022). Wpływ podpowierzchniowego wnoszenia nawozu mineralnego na plon i jakość nasion soi w warunkach uprawy bezpłużnej [The effect of subsurface mineral fertilizer application on the yield and seed quality of soybean under no-tillage conditions]. Agron. Sci., 77(4), 109–131 [in Polish]. http://doi.org/10.24326/as.2022.4.8 DOI: https://doi.org/10.24326/as.2022.4.8
  14. Lee, T.E., Spankulova, Z.B., Orazbajewa, U.M., Didorenko S.W., Atabajewa, S.D. (2016). Amino acid profiles and sucrose content in developing soybean seeds. J. Biotech., 231(10), 41–42. https://doi.org/10.1016/j.jbiotec.2016.05.162 DOI: https://doi.org/10.1016/j.jbiotec.2016.05.162
  15. Marín, C. (2021). Spatial and density-dependent multilevel selection on weed-infested maize. Genet. Resour. Crop Evol., 68, 885–897. https://doi.org/10.1007/s10722-020-01031-1 DOI: https://doi.org/10.1007/s10722-020-01031-1
  16. Mohamed, H.F.Y., Mahmoud, A.A., Abdel-Wahab, E.I. (2018). Influences of ridge width and foliar spraying of amino acids compounds on yield and quality of two faba bean cultivars. Agric. Sci., 9(12), 1629–1651. http://dx.doi.org/10.4236/as.2018.912114 DOI: https://doi.org/10.4236/as.2018.912114
  17. Panasiewicz, K., Faligowska, A., Szymańska, G., Ratajczak, K., Sulewska, H. (2023). Optimizing the amount of nitrogen and seed inoculation to improve the quality and yield of soybean grown in the Southeastern Baltic Region. Agriculture, 13(4), 798. https://doi.org/10.3390/agriculture13040798 DOI: https://doi.org/10.3390/agriculture13040798
  18. Poudel, D.D., Horwath, W.R., Lanini, W.T., Temple, S.R., Van Bruggen, A.H.C. (2002). Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern California. Agric. Ecosyst. Environ., 90(2), 125–137. https://doi.org/10.1016/S0167-8809(01)00196-7 DOI: https://doi.org/10.1016/S0167-8809(01)00196-7
  19. Reis, A.F.D.B., Tamagno, S., Rosso, L.H.M., Ortez, A.O., Naeve, S., Ciampitti, I.A. (2020). Historical trend on seed amino acid concentration does not follow protein changes in soybeans. Sci. Rep., 10, 17707. https://doi.org/10.1038/s41598-020-74734-1 DOI: https://doi.org/10.1038/s41598-020-74734-1
  20. Safina, S.A., Mohamed, H.F.M., Abdel-Wahab, E.I., El-Moemen, M.A. (2018). Seed yield and its quality of some soybean varieties by humic acid. Acad. J. Agric. Res., 6(5), 194–213. https://doi.org/10.15413ajar.2017.IECCNA.21
  21. Saranraj, P., Sivasakthivelan, P., Al-Tawaha, A.R.M., Bright, R., Amanullah, I., Al-Tawaha, A.R., Thangadurai, D., Sangeetha, J., Rauf, A., Khalid, S., Al Sultan, W., Safari, Z.S., Qazizadah, A.Z., Zahid, N.A., Sirajuddin, S.N. (2021). Macronutrient management for the cultivation of Soybean (Glycine max L.): a review. IOP Conf. ser. Earth Environ. Sci., 788. https://doi.org/10.1088/1755-1315/788/1/012055 DOI: https://doi.org/10.1088/1755-1315/788/1/012055
  22. Sharma, S., Kaur, M., Goyal, R., Gill, B.S. (2014). Physical characteristics and nutritional composition of some new soybean (Glycine max (L.) Merrill) genotypes. J. Food Sci. Technol., 51, 551–557. https://doi.org/10.1007/s13197-011-0517-7 DOI: https://doi.org/10.1007/s13197-011-0517-7
  23. Shawon, S.D., Islam, M.N., Biswas, M., Sarker, S. (2018). Competitiveness of Aus rice varieties against weed infestation. J. Sylhet Agril. Univ., 5(1), 7–14.
  24. Wilk, M. (2017). Soja źródłem cennych składników żywieniowych [Soya as a source of valuable nutrients]. Żywność. Nauka. Technologia. Jakość, 24, 2 (111), 16–25 [in Polish]. https://doi.org/10.15193/zntj/2017/111/182 DOI: https://doi.org/10.15193/zntj/2017/111/182
  25. Witek T. (1981). Waloryzacja rolniczej przestrzeni produkcyjnej Polski według gmin. Instytut Uprawy Nawożenia i Gleboznawstwa, Puławy, Dział Wydawnictw i Małej Poligrafii.
  26. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soil and Creating Legends for Soil Maps (2015). World Soil Resources Reports, 106. FAO, Rome.
  27. Zimmer, S., Messmer, M., Haase, T., Piepho, H.P., Mindermann, A., Schulz, H., Habekuß, A., Ordon, F., Wilbois, K.P., Heß, J. (2016). Effects of soybean variety and Bradyrhizobium strains on yield, protein content and biological nitrogen fixation under cool growing conditions in Germany. Europ. J. Agron., 72, 38–46. https://doi.org/10.1016/j.eja.2015.09.008 DOI: https://doi.org/10.1016/j.eja.2015.09.008

Downloads

Download data is not yet available.

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.