Skip to main navigation menu Skip to main content Skip to site footer

Vol. 23 No. 1 (2024)

Articles

Metabolomic analysis of Chinese yam (Dioscorea polystachya Turczaninow) bulbils at different germination stages by UPLC-Q-TOF-MS

DOI: https://doi.org/10.24326/asphc.2024.5247
Submitted: July 19, 2023
Published: 2024-02-29

Abstract

Bulbil germination is crucial to the survival of Chinese yam plants, the preservation of germplasm resources and the worldwide supply of food and natural medicine. There are still some unknowns regarding bulbil biochemical variations associated with germination. The metabolic changes during the germination of Chinese yam (Dioscorea polystachya Turczaninow) bulbils were studied using ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) at eight-time points covering all four phases of germination. It was determined that 27 metabolites, including organic acids, amino acids, sugars, lipid metabolites, phenolics and steroids, were responsible for the variation in the Chinese yam bulbil groups. A metabolomics pathway was proposed based on the identified metabolites. The main processes affected during germination were those related to carbohydrate metabolism, the TCA cycle, lipid metabolism, nitrogen metabolism, lipid metabolism and polyphenol metabolism. It is one of the earliest reports on the metabolite identification and profiling of Chinese yam bulbils at different germination stages.

References

  1. Chandrasekaran, U., Liu, A. (2015). Stage-specific metabolization of triacylglycerols during seed germination of Sacha Inchi (Plukenetia volubilis L.). J. Sci. Food Agric. 95(8), 1764–1766. https://doi.org/10.1002/jsfa.6855 DOI: https://doi.org/10.1002/jsfa.6855
  2. Chaniad, P., Tewtrakul, S., Sudsai, T., Langyanai, S., Kaewdana, K. (2020). Anti-inflammatory, wound healing and antioxidant potential of compounds from Dioscorea bulbifera L. bulbils. PLoS ONE, 15, e0243632. https://doi.org/10.1371/journal.pone.0243632 DOI: https://doi.org/10.1371/journal.pone.0243632
  3. Chen, L., Wu, J.e., Li, Z., Liu, Q., Zhao, X., Yang, H. (2019). Metabolomic analysis of energy regulated germination and sprouting of organic mung bean (Vigna radiata) using NMR spectroscopy. Food Chem. 286, 87–97. https://doi.org/10.1016/j.foodchem.2019.01.183 DOI: https://doi.org/10.1016/j.foodchem.2019.01.183
  4. Cho, J., Choi, H., Lee, J., Kim, M.-S., Sohn, H.-Y., Lee, D.G. (2013). The antifungal activity and membrane-disruptive action of dioscin extracted from Dioscorea nipponica. Biochim. Biophys. Acta, 1828(3), 1153–1158. https://doi.org/10.1016/j.bbamem.2012.12.010 DOI: https://doi.org/10.1016/j.bbamem.2012.12.010
  5. Choi, K.-W., Um, S.H., Kwak, J.-H., Park, H.-J., Kim, K.-H., Moon, E.-Y., Kwon, S.-T., Pyo, S. (2012). Suppression of adhesion molecule expression by phenanthrene-containing extract of bulbils of Chinese yam in vascular smooth muscle cells through inhibition of MAPK, Akt and NF-κB. Food Chem. Toxicol. 50(8), 2792–2804. https://doi.org/10.1016/j.fct.2012.05.005 DOI: https://doi.org/10.1016/j.fct.2012.05.005
  6. Dai, H., Fu, M., Yang, X., Chen, Q. (2016). Ethylene inhibited sprouting of potato tubers by influencing the carbohydrate metabolism pathway. J. Food Sci. Technol. 53(8), 3166–3174. https://doi.org/10.1007/s13197-016-2290-0 DOI: https://doi.org/10.1007/s13197-016-2290-0
  7. Dessalegn, O. (2016). Propagation methods of yam (Dioscorea species) with special attention to in vitro propagation. J. Appl. Biotechnol. 4(1), 13. https://doi.org/10.5296/jab.v4i1.9031 DOI: https://doi.org/10.5296/jab.v4i1.9031
  8. Drummond, C.P., Renner, T. (2022). Genomic insights into the evolution of plant chemical defense. Curr. Opin. Plant Biol. 68, 102254. https://doi.org/10.1016/j.pbi.2022.102254 DOI: https://doi.org/10.1016/j.pbi.2022.102254
  9. Gu, E.-J., Kim, D.W., Jang, G.-J., Song, S.H., Lee, J.-I., Lee, S.B., Kim, B.-M., Cho, Y., Lee, H.-J., Kim, H.-J. (2017). Mass-based metabolomic analysis of soybean sprouts during germination. Food Chem. 217, 311–319. https://doi.org/10.1016/j.foodchem.2016.08.113 DOI: https://doi.org/10.1016/j.foodchem.2016.08.113
  10. Gao, J., Ren, R., Wei, Y., Jin, J., Ahmad, S., Lu, C., Wu, J., Zheng, C., Yang, F., Zhu, G. (2020). Comparative metabolomic analysis reveals distinct flavonoid biosynthesis regulation for leaf color development of Cymbidium sinense ‘Red Sun’. Int. J. Mol. Sci. 21(5), 1869. https://doi.org/10.3390/ijms21051869 DOI: https://doi.org/10.3390/ijms21051869
  11. Hill, C.B., Bacic, A., Roessner, U. (2014). LC-MS profiling to link metabolic and phenotypic diversity in plant mapping populations. Methods Mol. Biol. 1198, 29–41. https://doi.org/10.1007/978-1-4939-1258-2_3 DOI: https://doi.org/10.1007/978-1-4939-1258-2_3
  12. Islam, M.T., Lee, B.-R., Das, P.R., La, V.H., Jung, H.-I., Kim, T.-H. (2018). Characterization of p-Coumaric acid-induced soluble and cell wall-bound phenolic metabolites in relation to disease resistance to Xanthomonas campestris pv. campestris in Chinese cabbage. Plant Physiol. Biochem. 125, 172–177. https://doi.org/10.1016/j.plaphy.2018.02.012 DOI: https://doi.org/10.1016/j.plaphy.2018.02.012
  13. Keawkim, K., Lorjaroenphon, Y., Vangnai, K., Jom, K.N. (2021). Metabolite–flavor profile, phenolic content, and antioxidant activity changes in Sacha Inchi (Plukenetia volubilis L.) seeds during germination. Foods 10(10), 2476. https://doi.org/10.3390/foods10102476 DOI: https://doi.org/10.3390/foods10102476
  14. Kim, H., Kim, O.-W., Ahn, J.-H., Kim, B.-M., Oh, J., Kim, H.-J. (2020). Metabolomic analysis of germinated brown rice at different germination stages. Foods 9(8), 1130. https://doi.org/10.3390/foods9081130 DOI: https://doi.org/10.3390/foods9081130
  15. Kim, S.K., Lee, S.C., Lee, B.H., Choi, H.J., Lee, I.J. (2010). Bulbil formation and yield responses of chinese yam to application of gibberellic acid, mepiquat chloride and trinexapac-ethyl. J. Agron. Crop Sci. 189(4), 255–260. https://doi.org/10.1046/j.1439-037X.2003.00039.x DOI: https://doi.org/10.1046/j.1439-037X.2003.00039.x
  16. Lebot, V., Faloye, B., Okon, E., Gueye, B. (2019). Simultaneous quantification of allantoin and steroidal saponins in yam (Dioscorea spp.) powders. J. Appl. Res. Med. Arom. Plants 13, 100200. https://doi.org/10.1016/j.jarmap.2019.02.001 DOI: https://doi.org/10.1016/j.jarmap.2019.02.001
  17. Li, X., Liu, S., Qu, L., Chen, Y., Yuan, C., Qin, A., Liang, J., Huang, Q., Jiang, M., Zou, W. (2021). Dioscin and diosgenin: Insights into their potential protective effects in cardiac diseases. J. Ethnopharmacol. 274, 114018. https://doi.org/10.1016/j.jep.2021.114018 DOI: https://doi.org/10.1016/j.jep.2021.114018
  18. Ma, J., Meng, X., Liu, Y., Yin, C., Zhang, T., Wang, P., Park, Y.-K., Jung, H.W. (2020). Effects of a rhizome aqueous extract of Dioscorea batatas and its bioactive compound, allantoin in high fat diet and streptozotocin-induced diabetic mice and the regulation of liver, pancreas and skeletal muscle dysfunction. J. Ethnopharmacol. 259, 112926. https://doi.org/10.1016/j.jep.2020.112926 DOI: https://doi.org/10.1016/j.jep.2020.112926
  19. Mizuki, I., Ishida, K., Tani, N., Tsumura, Y. (2010). Finescale spatial structure of genets and sexes in the dioecious plant Dioscorea japonica, which disperses by both bulbils and seeds. Evol. Ecol. 24, 1399–1415. https://doi.org/10.1007/s10682-010-9396-z DOI: https://doi.org/10.1007/s10682-010-9396-z
  20. Murty, Y.S., Purnima. (1983). Morphology, anatomy and development of bulbil in some dioscoreas. Proc. Plant Sci. 92, 443–449. https://doi.org/10.1007/BF03053017 DOI: https://doi.org/10.1007/BF03053017
  21. Narula, A., Kumar, S., Bansal, K.C., Srivastava, P.S. (2003). In vitro micropropagation, differentiation of aerial bulbils and tubers and diosgenin content in Dioscorea bulbifera. Planta Med. 69(8), 778–779. https://doi.org/10.1055/s-2003-42781 DOI: https://doi.org/10.1055/s-2003-42781
  22. Ninomiya, A., Murata, Y., Tada, M., Shimoishi, Y. (2008). Change in allantoin and arginine contents in Dioscorea opposita ‘Tsukuneimo’ during the growth. J. Japan. Soc. Hort. Sci. 73(6), 546–551. https://doi.org/10.2503/jjshs.73.546 DOI: https://doi.org/10.2503/jjshs.73.546
  23. Nourimand, M., Todd, C.D. (2019). There is a direct link between allantoin concentration and cadmium tolerance in Arabidopsis. Plant Physiol. Biochem. 135, 441–449. https://doi.org/10.1016/j.plaphy.2018.11.016 DOI: https://doi.org/10.1016/j.plaphy.2018.11.016
  24. Okagami, N. (1986). Dormancy in Dioscorea: different temperature adaptation of seeds, bulbils and subterranean organs in relation to north-south distribution. Bot. Mag. Tokyo 99, 15–27. https://doi.org/10.1007/BF02488619 DOI: https://doi.org/10.1007/BF02488619
  25. Osuna, D., Prieto, P., Aguilar, M. (2015). Control of seed germination and plant development by carbon and nitrogen availability. Front. Plant Sci. 6, 1023. https://doi.org/10.3389/fpls.2015.01023 DOI: https://doi.org/10.3389/fpls.2015.01023
  26. Padhan, B., Panda, D. (2020). Potential of neglected and underutilized yams (Dioscorea spp.) for improving nutritional security and health benefits. Front. Pharmacol. 11, 496. https://doi.org/10.3389/fphar.2020.00496 DOI: https://doi.org/10.3389/fphar.2020.00496
  27. Qu, C., Zuo, Z., Cao, L., Huang, J., Liu, G. (2019). Comprehensive dissection of transcript and metabolite shifts during seed germination and post-germination stages in poplar. BMC Plant Biol. 19, 1–15. https://doi.org/10.1186/s12870-019-1862-3 DOI: https://doi.org/10.1186/s12870-019-1862-3
  28. Rolland, F., Moore, B., Sheen, J. (2001). Sugar sensing and signaling in plants. Plant Cell 14(S1), S185-S205. https://doi.org/10.1105/tpc.010455 DOI: https://doi.org/10.1105/tpc.010455
  29. Sherwin, T., Simon, E.W. (1969). The appearance of lactic acid in phaseolus seeds germinating under wet conditions. J. Exp. Bot., 776–785. https://doi.org/10.1093/jxb/20.4.776 DOI: https://doi.org/10.1093/jxb/20.4.776
  30. Song, S., Chu, L., Liang, H., Chen, J., Liang, J., Huang, Z., Zhang, B., Chen, X. (2019). Protective effects of dioscin against doxorubicin-induced hepatotoxicity via regulation of Sirt1/FOXO1/NF-κb signal. Front. Pharmacol. 10, 1030. https://doi.org/10.3389/fphar.2019.01030 DOI: https://doi.org/10.3389/fphar.2019.01030
  31. Sun, J., Jia, H., Wang, P., Zhou, T., Wu, Y., Liu, Z. (2019). Exogenous gibberellin weakens lipid breakdown by increasing soluble sugars levels in early germination of zanthoxylum seeds. Plant Sci. 280, 155–163. https://doi.org/10.1016/j.plantsci.2018.08.013 DOI: https://doi.org/10.1016/j.plantsci.2018.08.013
  32. Tomková-Drábková, L., Psota, V., Sachambula, L., Leišová-Svobodová, L., Mikyška, A., Kučera, L. (2016). Changes in polyphenol compounds and barley laccase expression during the malting process. J. Sci. Food Agric. 96(2), 497–504. https://doi.org/10.1002/jsfa.7116 DOI: https://doi.org/10.1002/jsfa.7116
  33. Walck, J.L., Cofer, M.S., Hidayati, S.N. (2010). Understanding the germination of bulbils from an ecological perspective: a case study on Chinese yam (Dioscorea polystachya). Ann. Bot. 106(6), 945–955. https://doi. org/10.1093/aob/mcq189 DOI: https://doi.org/10.1093/aob/mcq189
  34. Wang, G., Wu, L., Zhang, H., Wu, W., Zhang, M., Li, X.F., Wu, H. (2016). Regulation of the phenylpropanoid pathway: a mechanism of selenium tolerance in peanut (Arachis hypogaea L.) Seedlings. J. Agric. Food Chem. 64(18), 3626–3635. https://doi.org/10.1021/acs.jafc.6b01054 DOI: https://doi.org/10.1021/acs.jafc.6b01054
  35. Wang, P., Kong, C.-H., Sun, B., Xu, X.-H. (2012). Distribution and function of allantoin (5-ureidohydantoin) in rice grains. J. Agric. Food Chem. 60(11), 2793. https://doi.org/10.1021/jf2051043 DOI: https://doi.org/10.1021/jf2051043
  36. Wu, X., Wang, Y., Tang, H. (2020). Quantitative metabonomic analysis reveals the germination-associated dynamic and systemic biochemical changes for mung-bean (Vigna radiata) seeds. J. Proteome Res. 19(6), 2457–2470. https://doi.org/10.1021/acs.jproteome.0c00181 DOI: https://doi.org/10.1021/acs.jproteome.0c00181
  37. Wu, Z.G., Jiang, W., Tao, Z.-M., Pan, X.J., Yu, W.H., Huang, H.-L. (2019). Morphological and stage-specific transcriptome analyses reveal distinct regulatory programs underlying yam (Dioscorea alata L.) bulbil growth. J. Exp. Bot. 71(6), 1899–1914. https://doi.org/10.1093/jxb/erz552 DOI: https://doi.org/10.1093/jxb/erz552
  38. Yu, Y.-G., Guo, X.-Y., Li, X.-Y., Dai, D.-D., Xu, X.-R., Ge, X.-J., Li, Y.-J., Yang, T.-G. (2021). Organ- and age-specific differences of Dioscorea polystachya compounds measured by UPLC-QTOF/MS. Chem. Biodiversity 18(2), e2000856. https://doi.org/10.1002/cbdv.202000856 DOI: https://doi.org/10.1002/cbdv.202000856
  39. Zhang, S.R. (2014). Dioscoreaceae. In: Ai T.M. (ed.). Medicinal flora of China. 11th Ed. Peking, Peking University Medical Press, 48.
  40. Zhang, B., Guo, K., Lin, L.S., Wei, C.X. (2018). Comparison of structural and functional properties of starches from the rhizome and bulbil of Chinese Yam (Dioscorea opposita Thunb.). Molecules 23(2), 427. https://doi.org/10.3390/molecules23020427 DOI: https://doi.org/10.3390/molecules23020427

Downloads

Download data is not yet available.

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.