Skip to main navigation menu Skip to main content Skip to site footer

Vol. 23 No. 4 (2024):

Articles

Ethanol added to washing water delays yellowing in Spinacia oleracea L. cv. ‘Matador’

DOI: https://doi.org/10.24326/asphc.2024.5363
Submitted: March 31, 2024
Published: 2024-09-06

Abstract

The primary quality concern for spinach and other green vegetables during post-harvest handling is preserving the green color, specifically by delaying the yellowing caused by chlorophyll loss. The current study, therefore, aimed to investigate the effect of ethanol added to washing water in low concentrations on yellowing, chlorophyll loss, and the storage quality of spinach. For this purpose, ethanol was added to tap water at 0 µL L–1 (control), 200 µL L–1, 400 µL L–1, and 800 µL L–1, and after pre-washing, the spinach leaves were dipped in these solutions at a temperature of 16–18°C for five minutes. The spinach was stored at 4 ±1°C and at 90–95% RH for 21 days after being drained, dried, and packed, and the quality parameters were recorded at seven-day intervals. As a result of this study, the decline in chlorophyll losses was obtained especially by the application of the 400 µL L–1 ethanol treatment after the first 14 days of storage, and this result was positively correlated with both the color values L*, a*, b*, hue, yellowness index (YI), total color difference (ΔE), and the chlorophyll SPAD (soil-plant analysis development) values. Consequently, adding 400 µL L–1 of ethanol to the washing water was the most effective in delaying yellowing and chlorophyll loss in spinach. However, this effect declined with increasing solution concentrations and was accompanied by weight loss.

References

  1. Awad, A.H., Parmar, A., Ali, M.R., El-Mogy, M.M., Abdelgawa, K.F. (2021). Extending the shelf-life of fresh-cut green bean pods by ethanol, ascorbic acid, and essential oils. Foods 10, 1103. https://doi.org/10.3390/foods10051103
  2. Bandian, L., Neamati, H., Moghaddam, M. (2016). Effect of different N fertilization times on post-harvest quality of spinach (Spinacea oleracea L.). Int. J. Adv. Biotechnol. Res., 7, 235–243.
  3. Brummell, D.A., Toivonen, P.M. (2018). Postharvest physiology of vegetables. In: Siddiq, M., Uebersax, M.A. (eds), Handbook of vegetables and vegetable processing. John Wiley & Sons, 223–245. https://doi.org/10.1002/9781119098935.ch9
  4. Candir, E., Ozdemir, A.E., Kamiloglu, O., Soylu, E.M., Dilbaz, R., Ustun, D. (2012). Modified atmosphere packaging and ethanol vapor to control decay of ‘Red Globe’ table grapes during storage. Postharvest Biol. Technol. 63(1), 98–106. https://doi.org/10.1016/j.postharvbio.2011.09.008
  5. Chakraborty, I., Chattopadhyay, A. (2018). Pre-and post-harvest losses in vegetables. In: Singh B., Singh S. (eds.), Advances in postharvest technologies of vegetable crops. CRC Press, Boca Raton, 1431(1), 25–87. https://doi.org/10.1201/9781315161020
  6. Chen, O.L., Lin, C., Kelkar, S.M., Chang, Y., Shaw, J. (2008). Transgenic broccoli (Brassica oleracea var. italica) with antisense chlorophyllase (BoCLH1) delays postharvest yellowing. Plant Sci., 174, 25–31. https://doi.org/10.1016/j.plantsci.2007.09.006
  7. Chen, J., Jin, Z., Xiang, L., Chen, Y., Zhang, J., Zhao, J., Huang, F., Shi, Y., Cheng, F., Pan, G. (2023). Ethanol sup-presses rice seed germination through inhibiting ROS signaling. J. Plant Physiol., 291, 154123. https://doi.org/10.1016/j.jplph.2023.154123
  8. de França, D.L.B., Braga, G.C., Laureth, J.C.U., Dranski, J.A.L., de Andrade Moura, C. (2019). Physiological re-sponse, antioxidant enzyme activities and conservation of banana treated with ethanol vapor. J. Food Sci., 56, 208–216. https://doi.org/10.1007/s13197-018-3476-4
  9. Dorostkar, M., Moradinezhad, F. (2022). Postharvest quality responses of pomegranate fruit (cv. Shishe-kab) to ethanol, sodium bicarbonate dips and modified atmosphere packaging. Adv. Hortic. Sci., 36(2), 107–117. https://doi.org/10.36253/ahsc¬12041
  10. Fukasawa, A., Suzuki, Y., Terai, H., Yamauchi, N. (2010). Effects of postharvest ethanol vapor treatment on activi-ties and gene expression of chlorophyll catabolic enzymes in broccoli florets. Postharvest Biol. Technol., 55, 97–102. https://doi.org/10.1016/j.postharvbio.2009.08.010
  11. Gondi, M., Prasada Rao, U.J.S. (2015). Ethanol extract of mango (Mangifera indica L.) peel inhibits α-amylase and α-glucosidase activities, and ameliorates diabetes related biochemical parameters in streptozotocin (STZ)-induced diabetic rats. J. Food Sci. Tech., 52, 7883–7893. https://doi.org/10.1007/s13197-015-1963-4
  12. Grozeff, G.E.G., Chaves, A.R., Bartoli, C.G. (2013). Low irradiance pulses improve postharvest quality of spinach leaves (Spinacia oleraceae L. cv. Bison). Postharvest Biol. Technol., 77, 35–42. https://doi.org/10.1016/j.postharvbio.2012.10.012
  13. Hirschler, R. (2012). Whiteness, yellowness, and browning in food colorimetry. In: Caivano, J.L., Buera, M.P. (eds), Color in food: technological and psychophysical aspects. CRC press, Taylor and Francis Group, pp. 93–104. https://doi.org/10.1201/b11878-13
  14. Hodges, D.M., Toivonen, P.M. (2008). Quality of fresh-cut fruits and vegetables as affected by exposure to abiotic stress. Postharvest Biol. Technol., 48, 155–162. https://doi.org/10.1016/j.postharvbio.2007.10.016
  15. Ji, Y., Hu, W., Liao, J., Xiu, Z., Jiang, A., Guan, Y., Yang, X., Feng, K. (2021). Ethanol vapor delays softening of postharvest blueberry by retarding cell wall degradation during cold storage and shelf life. Postharvest Biol. Technol., 177, 111538. https://doi.org/10.1016/j.postharvbio.2021.111538
  16. Jin, Y.Z., Liu, W.W., Qi, H.Y., Bai, X.H. (2013). Ethanol vapor treatment maintains postharvest storage quality and inhibits internal ethylene biosynthesis during storage of oriental sweet melons. Postharvest Biol. Technol., 86, 372–380. https://doi.org/10.1016/j.postharvbio.2013.07.019
  17. Kanlayanarat, S. (2009). Postharvest technologies for fresh leafy vegetables in Thailand. In: Aceco Jr., A.L, Wein-berger, A. (eds), Best practices in postharvest management of leafy vegetables in Greater Mekong Subregion countries. Proceedings of a GMS workshop 25–27 October 2007, Hanoi, Vietnam. AVRDC Publication No. 09-731. The World Vegetable Centre, Taiwan, 44–52.
  18. Kasım, M.U., Kasım, R. (2017). Yellowing of fresh-cut spinach (Spinacia oleracea L.) leaves delayed by UV-B applications. Inf. Proc. Agric., 4(3), 214–219. https://doi.org/10.1016/j.inpa.2017.05.006
  19. Kaur, P., Rai, D.R., Paul, S. (2011). Quality changes in fresh-cut spinach (Spinacia oleracea) under modified at-mospheres with perforations. J. Food Qual., 34, 10–18. https://doi.org/10.1111/j.1745-4557.2010.00361.x
  20. Khanna-Chopra, R. (2012). Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloro-plast degradation. Protoplasma, 249, 469–481. https://doi.org/10.1007/s00709-011-0308-z
  21. Koh, E., Charoenprasert, S., Mitchell, A.E. (2012), Effect of organic and conventional cropping systems on ascorbic acid, vitamin C, flavonoids, nitrate, and oxalate in 27 varieties of spinach (Spinacia oleracea L.). J. Agric. Food Chem., 60, 3144–3150. https://doi.org/10.1021/jf300051f
  22. Koike, T., Cahn, M., Cantwell, M., Fennimore, S., Lestrange, M., Natwick, E., Smith, R.F., Takele, E. (2011). Spinach production in California. University of California, Agriculture and Natural Resources, Davis, CA. https://doi.org/10.3733/ucanr.7212
  23. Konica Minolta. (2023). Precise color communication. Part I. Color difference. Available at: https://www.konicaminolta.com/instruments/knowledge/color/ [accessed: 20 June 2023].
  24. Lin, X., Wang, L., Hou, Y., Zheng, Y., Jin, P. (2020). A combination of melatonin and ethanol treatment improves postharvest quality in bitter melon fruit. Foods, 9, 1376. https://doi.org/10.3390/foods9101376
  25. Liu, G., Li, B., Wang, Y., Wei, B., He, C., Liu, D., Shi, H. (2019a). Novel role of ethanol in delaying postharvest phys-iological deterioration and keeping quality in cassava. Food Bioproc. Tech., 12, 1756–1765. https://doi.org/10.1007/s11947-019-02330-x
  26. Liu, H., Meng, F., Chen, S., Yin, T., Hu, S., Shao, Z., Liu, Y., Zhu, C., Ye, H., Wang, Q. (2019b). Ethanol treatment improves the sensory quality of cherry tomatoes stored at room temperature. Food Chem., 298, 125069. https://doi.org/10.1016/j.foodchem.2019.125069
  27. Lloyd, J.R., Kötting, O. (2016). Starch biosynthesis and degradation in plants. eLS. Hoboken, Wiley, 1–10. https://doi.org/10.1002/9780470015902.a0020124
  28. Martínez-Sánchez, A., Lozano-Pastor, P., Artés-Hernández, F., Artés, F., Aguayo, E. (2019). Preharvest UV-C treatment improves the quality of spinach primary production and postharvest storage. Postharvest Biol. Tech-nol., 155, 130–139. https://doi.org/10.1016/j.postharvbio.2019.05.021
  29. Morelock, T.E., Correll, J.C. (2008). Spinach. In: Prohens, J., Nuez, F, (eds), Vegetables I. Springer, New York, pp. 189–218. https://doi.org/10.1007/978-0-387-30443-4_6
  30. Mori, T., Terai, H., Yamauchi, N., Suzuki, Y. (2009). Effects of postharvest ethanol vapor treatment on the ascor-bate-glutathione cycle in broccoli florets. Postharvest Biol. Technol., 52, 134–136. https://doi.org/10.1016/j.postharvbio.2008.10.001
  31. Murcia, M.A., Jiménez-Monreal, A.M., Gonzalez, J., Martínez-Tomé, M. (2020). Spinach. In: Jaiswal, A.K., Nutri-tional composition and antioxidant properties of fruits and vegetables. Academic Press, pp. 181–195. https://doi.org/10.1016/B978-0-12-812780-3.00011-8
  32. Noma, Y., Suzuki, Y., Terai, H., Yamauchi, N. (2009). Effects of postharvest ethanol vapor treatment on quality of sudachi (Citrus sudachi Hort. ex. Shirai) fruit. Food Preserv. Sci., 35, 187–193.
  33. Ni, Z., Kim, E.D., Chen, J. (2009). Scientific protocols, chlorophyll and starch assays. Chen Lab (The University of Texas at Austin), 2677. https://doi.org/10.1038/nprot.2009.12
  34. Nguyen, H.M., Sako, K., Matsui, A., Suzuki, Y., Mostofa, M.G., Ha, C.V., Tanaka, M., Tran, L-S.P., Habu, Y., Seki, M. (2017). Ethanol enhances high-salinity stress tolerance by detoxifying reactive oxygen species in Arabidopsis thaliana and rice. Front Plant Sci., 8, 1001. https://doi.org/10.3389/fpls.2017.01001
  35. Opio, P., Pongphen, J., Pongprasert, N., Wongs-Aree, C., Suzuki, Y., Srilaong, V. (2015). Postharvest ethanol vapor treatment delays chlorophyll degradation and maintains quality of Thai lime (Citrus aurantifolia Swingle cv. Paan) fruit. Agric. Sci. J., 46(3), Suppl., 173–176.
  36. Papachristodoulou, M., Koukounaras, A., Siomos, A.S., Liakou, A., Gerasopoulos, D. (2018). The effects of ozonat-ed water on the microbial counts and the shelf life attributes of fresh‐cut spinach. J. Food Proc. Preserv., 42(1), e13404. https://doi.org/10.1111/jfpp.13404
  37. Pesis, E. (2005). The role of anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biol. Technol., 37, 1–19. https://doi.org/10.1016/j.postharvbio.2005.03.001
  38. Pun, U.K., Yamada, T., Tanase, K., Shimizu-Yumoto, H., Satoh, S., Ichimura, K. (2014). Effect of ethanol on eth-ylene biosynthesis and sensitivity in cut carnation flowers. Postharvest Biol. Technol., 98, 30–33. https://doi.org/10.1016/j.postharvbio.2014.06.018
  39. Roberts, J.L., Moreau, R. (2016). Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bio-actives. Food Funct., 7, 3337–3353. https://doi.org/10.1039/C6FO00051G
  40. Romero, I., Vazquez-Hernandez, M., Tornel, M., Escribano, M.I., Merodio, C., Sanchez-Ballesta, M.T. (2021). The effect of ethanol treatment on the quality of a new table grape cultivar It 681–30 stored at low temperature and after a 7-day shelf-life period at 20°C: a molecular approach. Int. J. Mol. Sci., 22(15), 8138. https://doi.org/10.3390/ijms22158138
  41. Sahoo, S.K., Tomar, M.S., Pradhan, R.C. (2021). Disinfecting agents for controlling fruits and vegetable diseases after harvest. In: Galanakis, C.M. (eds), Food losses, sustainable postharvest and food technologies. Academic Press, pp. 103–151. https://doi.org/10.1016/B978-0-12-821912-6.00007-9
  42. Sako, K., Nagashima, R., Tamoi, M., Seki, M. (2021). Exogenous ethanol treatment alleviates oxidative damage of Arabidopsis thaliana under conditions of high-light stress. Plant Biotechnol., 38(3), 339–344. https://doi.org/10.5511/plantbiotechnology.21.0715a
  43. Shashirekha, M.N., Mallikarjuna, S.E., Rajarathnam, S. (2015). Status of bioactive compounds in foods, with focus on fruits and vegetables. Crit. Rev. Food Sci. Nutr., 55, 1324–1339. https://doi.org/10.1080/10408398.2012.692736
  44. Suzuki, Y., Uji, T., Terai, H. (2004). Inhibition of senescence in broccoli florets with ethanol vapor from alcohol powder. Postharvest Biol. Technol., 31, 177–182. https://doi.org/10.1016/j.postharvbio.2003.08.002
  45. Suzuki, Y., Nagata, Y. (2019). Postharvest ethanol vapor treatment of tomato fruit stimulates gene expression of ethylene biosynthetic enzymes and ripening related transcription factors, although it suppresses ripening. Post-harvest Biol. Technol., 152, 118–126. https://doi.org/10.1016/j.postharvbio.2019.03.006
  46. Thewes, F.R., Balkees, B.M., Büchele, F., Wünsche, J.N., Neuwald, D.A., Brackmann, A. (2021). Ethanol vapor treatment inhibits apple ripening at room temperature even with the presence of ethylene. Postharvest Biol. Technol., 173, 111415. https://doi.org/10.1016/j.postharvbio.2020.111415
  47. Xu, F., Chen, X., Jin, P., Wang, X., Wang, J., Zheng, Y. (2012). Effect of ethanol treatment on quality and antioxi-dant activity in postharvest broccoli florets. Eur. Food Res. Technol., 235, 793–800. https://doi.org/10.1007/s00217-012-1808-6
  48. Xu, Y., Bao, Y., Chen, J., Yi, Y., Ai, Y., Hou, W., Wang L. Wang H., Min, T. (2023). Mechanisms of ethanol treat-ment on controlling browning in fresh-cut lotus roots. Sci. Hortic., 310, 111708. https://doi.org/10.1016/j.scienta.2022.111708
  49. Wang, K., Jin, P., Tang, S., Shang, H., Rui, H., Di, H., Cai, Y., Zheng, Y. (2011). Improved control of postharvest decay in Chinese bayberries by a combination treatment of ethanol vapor with hot air. Food Control, 22, 82–87. https://doi.org/10.1016/j.foodcont.2010.05.011
  50. Wang, Q., Nie, X., Cantwell, M. (2014). Hot water and ethanol treatment can effectively inhibit the discoloration of fresh-cut sunchoke (Helianthus tuberosus L.) tubers. Postharvest Biol. Technol., 94, 49–57. https://doi.org/10.1016/j.postharvbio.2014.03.003
  51. Yamauchi, N. (2015). Postharvest chlorophyll degradation and oxidative stress. In: Kanayama, Y., Kochetov, A. (eds) Abiotic stress biology in horticultural plants. Springer, Tokyo, pp. 101–113. https://doi.org/10.1007/978-4-431-55251-2_8
  52. Yan, S., Luo, Y., Zhou, B., Ingram, D.T. (2017). Dual effectiveness of ascorbic acid and ethanol combined treat-ment to inhibit browning and inactivate pathogens on fresh-cut apples. LWT Food Sci. Technol., 80, 311–320. https://doi.org/10.1016/j.lwt.2017.02.021
  53. Zhu, X., Chen, J., Qiu, K., Kuai, B. (2017). Phytohormone and light regulation of chlorophyll degradation. Front. Plant Sci., 8, 1911.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.