Abstract
Quinoa, a valuable halophyte, plays a crucial role in ensuring food and nutritional security under climate change. However, high salinity levels can hinder seed germination and subsequent plant growth. The current study aimed to enhance the salinity tolerance of pre-optimized quinoa seeds through various priming techniques: hydropriming (distilled water, 25 °C, 12 hours), halopriming (75 mM CaCl₂, KNO₃, and MgSO₄ at 25 °C for 12 hours), and hormopriming with gibberellic acid (GA₃ 25 mM, 25 °C, 12 hours). The seed germination parameters: germination percentage, relative salt tolerance and salt tolerance index, as well as growth parameters of seedlings as plant height, leaf number, plant fresh weight, root length, root fresh weight, plant height/root length ratio, plant height stress tolerance index, root length stress tolerance index, and chlorophyll content, were evaluated in Giza 02 and Q102 Chenopodium quinoa varieties. Halopriming with KNO₃, hormopriming with GA₃, followed by halopriming with MgSO₄, effectively mitigated the negative impacts of salinity. This priming approach shows promise for enhancing quinoa crop resilience in saline soils and could serve as a model for other salt-sensitive crops.
References
- Abdulmajeed, A. (2023). Salinity stress amelioration and morpho-physiological growth stimulation by silicon priming and biochar supplementation in Chenopodium quinoa. Not. Bot. Horti Agrobot. Cluj-Napoca, 51(2), 13043. https://doi.org/10.15835/nbha51213043
- Afzal, I., Rahim, A., Qasim, M., Younis, A., Nawaz, A., Bakhtavar, M. A. (2017). Inducing salt tolerance in French marigold (Tagetes patula) through seed priming. Acta Sci. Pol. Hortorum Cultus, 16(3), 109–118. https://doi.org/10.24326/asphc.2017.3.11
- Alam, A., Ullah, H., Cha-um, S., Tisarum, R., Datta, A. (2021). Effect of seed priming with potassium nitrate on growth, fruit yield, quality and water productivity of cantaloupe under water-deficit stress. Sci Hortic., 288,110354. https://doi.org/10.1016/j.scienta.2021.110354
- Ashraf, M., Rauf, H. (2001). Inducing salt tolerance in maize (Zea mays L.) through seed priming with chloride salts: Growth and ion transport at early growth stages. Acta Physiol. Plant., 23(4), 407–414. https://doi.org/10.1007/s11738-001-0050-9
- Bouallègue, A., Souissi, F., Nouairi, I., Souibgui, M., Abbes, Z., Mhadhbi, H. (2019). Physiological and biochemicals changes modulated by seeds’priming of lentil (Lens culinaris L.) under salt stress at germination stage. Acta Sci. Pol. Hortorum Cultus., 18(5), 27–38. https://doi.org/10.24326/asphc.2019.5.3
- Bourhim, M.R., Cheto, S., Qaddoury, A., Hirich, A., Ghoulam, C. (2022). Chemical seed priming with zinc sulfate improves quinoa tolerance to salinity at germination stage. Environ. Sci Proc., 16(23), 23. https://doi.org/10.3390/environsciproc2022016023
- Bradford, K.J., Steiner, J.J., Trawatha, S.E. (1990). Seed priming influence on germination and emergence of pepper seed lots. Crop Sci., 30(3), 718–721. https://doi.org/10.2135/cropsci1990.0011183X003000030049x
- Causin, H.F., Bordón, D.A.E., Burrieza, H. (2020). Salinity tolerance mechanisms during germination and early seedling growth in Chenopodium quinoa Wild. genotypes with different sensitivity to saline stress. EEB., 172, 103995. https://doi.org/10.1016/j.envexpbot.2020.103995
- Chauhan, A., AbuAmarah, B.A., Kumar, A., Verma, J.S., Ghramh, H.A., Khan, K.A., Ansari, M.J. (2019). Influence of gibberellic acid and different salt concentrations on germination percentage and physiological parameters of oat cultivars. Saudi J. Biol. Sci., 26(6), 1298–1304. https://doi.org/10.1016/j.sjbs.2019.04.014
- Devika, O.S., Singh, S., Sarkar, D., Barnwal, P., Suman, J., Rakshit, A. (2021). Seed priming: a potential supplement in integrated resource management under fragile intensive ecosystems. Front. Sustain. Food Syst., 5, 654001. https://doi.org/10.3389/fsufs.2021.654001
- FAO, (2008). International Fund for Agricultural Development (IFAD). Gender in agriculture. Sourcebook. World Bank Publications.
- Feghhenabi, F., Hadi, H., Khodaverdiloo, H., van Genuchten, M.Th. (2020). Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.). Agric Water Manag., 231, 106022. https://doi.org/10.1016/j.agwat.2020.106022
- Flowers, T.J., Colmer, T.D. (2008). Salinity tolerance in halophytes. New Phytol., 179(4), 945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x
- Gómez‐Pando, L.R., Álvarez‐Castro, R., Eguiluz‐de La Barra, A. (2010). Effect of salt stress on peruvian germplasm of Chenopodium quinoa Willd. A promising crop. J. Agron. Crop Sci., 196(5), 391–396. https://doi.org/10.1111/j.1439-037X.2010.00429.x
- Haider, I., Raza, M.A.S., Iqbal, R., Aslam, M.U., Habibur-Rahman, M., Raja, S., Khan, M.T., Aslam, M.M., Waqas, M., Ahmad, S. (2020). Potential effects of biochar application on mitigating the drought stress implications on wheat (Triticum aestivum L.) under various growth stages. J. Saudi Chem. Soc., 24(12), 974–981. https://doi.org/10.1016/j.jscs.2020.10.005
- Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S.-E., Shabala, S. (2011). Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J. Exp. Bot., 62(1), 185–193. https://doi.org/10.1093/jxb/erq257
- Hussain, S., Ahmed, S., Akram, W., Ahmad, A., Yasin, N.A., Fu, M., Li, G., Sardar, R. (2024). The potential of selenium to induce salt stress tolerance in Brassica rapa: Evaluation of biochemical, physiological and molecular phenomenon. Plant Stress., 11, 100331. https://doi.org/10.1016/j.stress.2023.100331
- Iqbal, W., Afridi, M.Z., Jamal, A., Mihoub, A., Saeed, M.F., Székely, Á., Zia, A., Khan, M.A., Jarma-Orozco, A., Pompelli, M.F. (2022). Canola seed priming and its effect on gas exchange, chlorophyll photobleaching, and enzymatic activities in response to salt stress. Sustainability, 14(15), 9377. https://doi.org/10.3390/su14159377
- Jafar, M.Z., Farooq, M., Cheema, M.A., Afzal, I., Basra, S.M.A., Wahid, M.A., Aziz, T., Shahid, M. (2012). Improving the performance of wheat by seed priming under saline conditions. J. Agron. Crop Sci., 198(1), 38–45. https://doi.org/10.1111/j.1439-037X.2011.00485.x
- Jahantighi, M., Roshandel, P. (2023). The effect of seed priming of Chenopodium quinoa L. var. Giza 1 with ascorbic acid on increasing salt tolerance. Iran J. Seed Sci. Res., 10(3), 81–93. https://doi.org/10.22124/jms.2023.7676
- Jiang, X.-W., Zhang, C.-R., Wang, W.-H., Xu, G.-H., Zhang, H.-Y. (2020). Seed priming improves seed germination and seedling growth of isatis indigotica fort. under salt stress. HortSci., 55(5), 647–650. https://doi.org/10.21273/HORTSCI14854-20
- Karalija, E., Selović, A. (2018). The effect of hydro and proline seed priming on growth, proline and sugar content, and antioxidant activity of maize under cadmium stress. Environ. Sci. Poll. Res. Int., 25(33), 33370–33380. https://doi.org/10.1007/s11356-018-3220-7
- Kinoshita, T., Seki, M. (2014). Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol., 55(11), 1859–1863. https://doi.org/10.1093/pcp/pcu125
- Lallouche, B., Boutekrabt, A., Hadjkouider, B., Riahi, L., Lamine, S., Zoghlami, N. (2017). Use of physio-biochemical traits to evaluate the salt tolerance of five opuntia species in the Algerian steppes. Pak. J. Bot., 49(3), 837–845.
- Lichtenthaler, H.K., Buschmann, C. (2001). Chlorophylls and carotenoids: measurement and characterization by UV‐VIS spectroscopy. Curr. Prot. Food Anal. Chem., 1(1), https://doi.org/10.1002/0471142913.faf0403s01
- Mamedi, A., Sharifzadeh, F., Maali-Amiri, R., Divargar, F., Rasoulnia, A. (2022). Seed osmopriming with Ca2+ and K+ improves salt tolerance in quinoa seeds and seedlings by amplifying antioxidant defense and ameliorating the osmotic adjustment process. Physiol. Mol. Biol. Plants., 28(1), 251–274. https://doi.org/10.1007/s12298-022-01125-3
- Paul, A., Mondal, S., Chakraborty, K., Biswas, A.K. (2024). Moving forward to understand the alteration of physiological mechanism by seed priming with different halo-agents under salt stress. Plant Mol. Biol., 114(2), 24. https://doi.org/10.1007/s11103-024-01425-0
- Raza, M.A.S., Aslam, M.U., Valipour, M., Iqbal, R., Haider, I., Mustafa, A.E.-Z.M.A., Elshikh, M.S., Ali, I., Roy, R., Elshamly, A.M.S. (2024). Seed priming with selenium improves growth and yield of quinoa plants suffering drought. Sci. Rep., 14(1), 886. https://doi.org/10.1038/s41598-024-51371-6
- Rehman, B., Zulfiqar, A., Attia, H., Sardar, R., Saleh, M.A., Alamer, K. H., Mehmood, F. (2024). Seed priming with potassium nitrate can enhance salt stress tolerance in maize. Phyton., 93(8), 1819–1838. https://doi.org/10.32604/phyton.2024.048780
- Ruiz-Carrasco, K., Antognoni, F., Coulibaly, A.K., Lizardi, S., Covarrubias, A., Martínez, E.A., Molina-Montenegro, M.A., Biondi, S., Zurita-Silva, A. (2011). Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiol. Biochem., 49(11), 1333–1341. https://doi.org/10.1016/j.plaphy.2011.08.005
- Salehi, M., Soltani, V., Dehghani, F. (2018). Effect of salt stress and seed priming methods on emergence and seedling characteristics of quinoa (Chenopodium quinoa Willd.). Environ. Stress. Crop Sci., 11(2), 381–391. https://doi.org/10.22077/escs.2017.595.1127
- Wicke, B., Smeets, E., Dornburg, V., Vashev, B., Gaiser, T., Turkenburg, W., Faaij, A. (2011). The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ. Sci., 4(8), 2669–2681. https://doi.org/10.1039/C1EE01029H
- Yan, M. (2016). Hydro-priming increases seed germination and early seedling growth in two cultivars of Napa cabbage (Brassica rapa subsp. pekinensis) grown under salt stress. J. Hortic. Sci. Biotechnol., 91(4), 421–426. https://doi.org/10.1080/14620316.2016.1162031
- Zörb, C., Geilfus, C.M., Dietz, K.J. (2019). Salinity and crop yield. Plant Biol., 21(S1), 31–38. https://doi.org/10.1111/plb.12884
Downloads
Download data is not yet available.
-
Sławomir Świerczyński,
Aleksander Stachowiak,
Ilona Świerczyńska,
Małgorzata Golcz-Polaszewska,
INFLUENCE OF ROOTSTOCK, CULTIVAR AND ERGOPLANT BIOSTIMULANT ON THE GROWTH OF MAIDEN PEAR TREES IN NURSERY AND PHYSIOLOGICAL COMPATIBILITY
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 13 No. 6 (2014)
-
Katarzyna Karczmarz,
Barbara Marcinek,
IMPACT OF MINERAL OILS ON DYNAMICS IN THE APHIDS PRESENCE AND VIRUS INFECTION OF TULIPS 'LEEN VAN DER MARK' CV. IN THE FIELD CULTIVATION
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 2 (2018)
-
Aleksander Stachowiak,
Sławomir Świerczyński,
THE INFLUENCE OF MYCORRHIZAL VACCINE ON THE GROWTH OF MAIDEN SWEET CHEERY TREES OF SELECTED CULTIVARS IN NURSERY
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 8 No. 1 (2009)
-
Farzad Rasouli,
Sina Golestaneh,
Mohammad Asadi,
Trifa Amini,
Negin Aslereyhani,
Nela Skowronkova,
Sezai Ercisli,
Anna Adamkova,
Lukas Snopek,
Jiri Mlcek,
Evaluation of Ca(NO3)2 and various container cell size effects on some growth attributes and nutrient content of tomato transplants
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 23 No. 2 (2024)
-
Semra Kilic,
Mehmet Bolukbasi,
PHYTOCHEMICAL ACCUMULATION WITH PHOTOMORPHOGENESIS AND PHYSIOLOGY OF SALVIA OFFICINALIS L.
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 5 (2020)
-
Tour Jan,
Ikram Ullah,
Bilal Muhammad,
_ Tariq,
Ali Mansoor,
Zaheer Ullah,
Muhammad Asif Nawaz,
EFFICIENT in vitro PROPAGATION OF Amaranthus viridis L. USING NODE EXPLANTS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 4 (2020)
-
Nurdilek Gulmezoglu,
Cigdem Yücel,
Sibel Yigiter-Saricam,
Mutual effects of humic acid content and nitrogen sources for vegetative development and flowering of snapdragon (Antirrhinum majus L.)
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 23 No. 1 (2024)
-
Danuta Rzepka-Plevneš,
Danuta Kulpa,
Emilia Palka,
Marlena Wiśniewska,
SOMACLONAL VARIABILITY IN CALLUS CULTURE OF Lycopersicon hirsutum f. typicum AND Lycopersicon chilense
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 9 No. 4 (2010)
-
Karolina Mieszkalska,
Aleksandra Łukaszewska,
EFFECT OF THE SILICON AND PHOSPHORUSCONTAINING FERTILIZER ON GERANIUM (Pelargonium hortorum L.H. Bailey) RESPONSE TO WATER STRESS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 10 No. 3 (2011)
-
Andrzej Borowy,
Mirosława Chwil,
Magdalena Kapłan,
BIOLOGICALLY ACTIVE COMPOUNDS AND ANTIOXIDANT ACTIVITY OF BORAGE (Borago officinalis L.) FLOWERS AND LEAVES
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 16 No. 5 (2017)
<< < 19 20 21 22 23 24 25 26 27 28 > >>
You may also start an advanced similarity search for this article.