Abstract
Pseudomonas ‘gingeri’ is the cause of ginger blotch disease of the white button mushrooms (Agaricus bisporus). The occurrence of the disease in the cultivation results in the appearance of ginger discolouration on the mushroom caps. Currently, there is no effective method of protecting the mushroom from bacterial infection. Therefore, the selection of appropriate substrates for mushroom cultivation and environmental cultivation conditions, such as relative humidity, are of high importance in controlling the disease. The aim of the study was to evaluate the effect, on the development of ginger blotch, of two types of peat-based casing soil, with different water holding capacity, and two different air relative humidities inside the mushroom growing chamber. The cultivation trials were artificially infected with two P. ‘gingeri’ isolates, at two different inoculation doses. The blotch disease incidence on the heavy casing soil, which characterised lower water holding capacity, was significantly higher than on the medium one, regardless of the number of bacterial cells and bacterial isolate. The results also demonstrated a significant correlation between higher levels of air humidity (90% in the cultivation chamber) and the ginger blotch prevalence. It was determined that the type of casing soil and the level of air humidity in the mushroom growing room are of crucial importance for efficient mushroom cultivation. These factors can also play a significant role in preventing against bacterial disease development.
References
- Beveridge, T.J. (2001). Use of the Gram stain in microbiology. Biotech. Histochem. 76(3), 111–118.
- Braat, N., Koster M.C., Wösten, H.A.B. (2022). Beneficial interactions between bacteria and edible mushrooms. Fungal Biol. Rev., 39, 60–72. https://doi.org/10.1016/j.fbr.2021.12.001
- Buchanan, R.E., Gibbons, N.E. (1974). Bergey’s manual of determinative bacteriology, 8th ed. Williams and Wilkins, Baltimore, USA, 217–243.
- Carrasco, J., Navarro, M.J., Santos, M.F., Diánez, F., Gea, F.J. (2015). Incidence, identification and pathogenicity of Cladobotryum mycophilum, causal agent of cobweb disease on Agaricus bisporus mushroom crops in Spain. Ann. Appl. Biol., 168, 214–224. https://doi.org/10.1111/aab.12257
- Dias, E.S., Zied, D.C., Pardo-Gimenez, A. (2021). Revisiting the casing layer. Casing materials and management in Agaricus mushroom cultivation. Sci. Agrotechnol., 45(2), https://doi.org/10.1590/1413-70542021450001R21
- Fletcher, J.T., Gaze, R.H. (2008). Mushroom pest and disease control. A color handbook. Manson Publishing, London, UK, 192 p.
- Gandy, D.G. (1967). The epidemiology of bacterial blotch of the cultivated mushroom. Rep. Glasshouse Crops Res. Inst., 966, 150–154.
- Gea, F.J., Carrasco, J., Santos, M., Diánez, F., Navarro, M.J. (2013). Incidence of Lecanicillium fungicola in white-button mushroom (Agaricus bisporus) cultivated with two types of casing soil. J. Plant Pathol., 95(1), 163–166.
- Gea, F.J., Navarro, M.J., Santos, M., Diánez, F., Carrasco, J. (2021). Control of fungal diseases in mushroom crops while dealing with fungicide resistance. A review. Microorganisms, 9(3), 585. https://doi.org/10.3390/microorganisms9030585
- Hugh, R., Leifson, E. (1953). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J. Bacteriol., 66(1), 24–26.
- King, E.O., Ward, M.K., Raney, D.E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clinical Med., 44, 301–307.
- Lomax, K.M. (2007). Dew point temperature related to wet mushroom caps. Mushroom News, 55(1), 4–10.
- Lelliott, R.A., Billing, E., Hayward, A.C. (1966). A determinative scheme for the fluorescent plant pathogenic pseudomonads. J. Appl. Bacteriol., 29(3), 470–489. https://doi.org/10.1111/j.1365-2672.1966.tb03499.x
- Mamoun, M., Moquet, F., Savoie, J.M., Devesse, C., Ramos-Guedes-Lafargue, M., Oliver, J.M., Arpin, N. (1999). Agaricus bisporus susceptibility to bacterial blotch in relation to environment: biochemical studies. FEMS Microbiol. Lett., 181(1), 131–136. https://doi.org/10.1111/j.1574-6968.1999.tb08835.x
- McGee, C.F. (2018). Microbial ecology of the Agaricus bisporus mushroom cropping process. Appl. Microbiol. Biotechnol., 102 (3), 1075–1083. https://doi.org/10.1007/s00253-017-8683-9
- Moquet, F., Mamoun, M., Olivier, J.M. (1996). Pseudomonas tolaasii and tolaasin. Comparison of symptom induction on a wide range of Agaricus bisporus strains. FEMS Microbiol. Lett. 142, 99–103. https://doi.org/10.1016/0378-1097(96)00250-9
- Moquet, F., Mamoun, M., Ramos-Guedes-Lafargue, M., Olivier, J.M., Savoie, J.M. (1998). Differences in susceptibility of Agaricus bisporus strains to bacterial blotch and in natural cap colour related to compost composition. Plant Breed. 117(4), 385–388. https://doi.org/10.1111/j.1439-0523.1998.tb01958.x
- Navarro, M.J., Gea, F.J., González, A.J. (2018). Identification, incidence and control of bacterial blotch disease in mushroom crops by management of environmental conditions. Sci. Hort., 229, 10–18. https://doi.org/10.1016/j.scienta.2017.10.023
- Navarro, M.J., Carrasco, J., Gea, F.J. (2021). The role of water content in the casing layer for mushroom crop production and the occurrence of fungal diseases. Agronomy, 11, 2063. https://doi.org/10.3390/agronomy11102063
- Noble, R., Dobrovin-Pennington, D. (2024). Physicochemical characterisation of casings in relation to mushroom (Agaricus bisporus) cropping performance. Fungal Biol., 128, 1698–1704. https://doi.org/10.1016/j.funbio.2024.02.004
- Noble, R., Fermor, T.R., Lincoln, S., Dobrovin-Pennington, A., Evered, C.E., Mead, A. (2003). Primordia initiation of mushroom (Agaricus bisporus) strains on axenic casing materials. Mycologia, 95 (4), 620–629. https://doi.org/10.1080/15572536.2004.11833066
- Olivier, J.M., Mamoun, M., Munsch, P. (1997). Standarization of a method to assess mushroom blotch resistance in cultivation and wild Agaricus bisporus strains. Canad. J. Plant Pathol., 19, 36–42. https://doi.org/10.1080/07060669709500569
- Paine, S.G. (1919). Studies in bacteriosis II. A brown blotch disease of cultivated mushrooms. Ann. Appl. Biol., 5, 206–219.
- Pardo, A., De Juan, J.A., Pardo, J.E. (2002). Bacterial activity in different types of casing during mushroom cultivation (Agaricus bisporus (Lange) Imbach). Acta Aliment., 31, 327–342. https://doi.org/10.1556/aalim.31.2002.4.3
- Sapers, G.M., Miller, R.L., Pilizota, V., Kamp, F. (2001). Shelf life extension of fresh mushrooms (Agaricus bisporus) by application of hydrogen peroxide and browning inhibitors. J. Food Sci., 66(2), 362–366. https://doi.org/10.1111/j.1365-2621.2001.tb11347.x
- Siwulski, M., Niedzielski, P., Budka, A., Budzyńska, S., Kuczyńska-Kippen, N., Kalač, P., Sobieralski, K., Mleczek, M. (2022). Patterns of changes in the mineral composition of Agaricus bisporus cultivated in Poland between 1977 and 2020. J. Food Compos. Anal., 112, 104660. https://doi.org/10.1016/j.jfca.2022.104660
- Soler-Rivas, C., Jolivet, S., Arpin, N., Olivier, J.M., Wichers, H.J. (1999). Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. FEMS Microbiol. Rev., 23, 591–614. https://doi.org/10.1016/S0168-6445(99)00023-6
- Szumigaj-Tarnowska, J., Uliński, Z. (2022). Wpływ ilości wody użytej do nawodnienia okrywy na rozwój chorób bakteryjnych pieczarki [The effect of amount of water used to irrigate casing soil on the development of bacterial diseases of the white button]. Post. Ochr. Roślin [Prog. Plant Prot.], 62(3), 167–173. https://dx.doi.org/10.14199/ppp-2022-019
- Ślusarski, C., Uliński Z., Szumigaj-Tarnowska, J. (2012). Wpływ typu ziemi okrywowej na porażenie uprawy pieczarki dwuzarodnikowej przez dwa izolaty grzyba Cladobotryum dendroides [Effect of casing soil type on the infection of the white button mushroom culture with two isolates of Cladobotryum dendroides]. Post. Ochr. Roślin [Prog. Plant Prot.], 52(2), 391-396. https://dx.doi.org/10.14199/ppp-2012-071
- Taparia, T., Hendrix, E., Hendriks, M., Krijger, M., Nijhuis, E., de Boer, W., van der Wolf, J. (2021a). Casing soil microbiome mediates suppression of bacterial blotch of mushrooms during consecutive cultivation cycles. Soil Biol. Biochem., 155, 108161. https: //doi.org/10.1016/j.soilbio.2021.108161
- Taparia, T., Hendrix, E., Hendriks, M., Krijger, M., de Boer, W., van der Wolf, J. (2021b). Comparative studies on the disease prevalence and population dynamics of ginger blotch and brown blotch of button mushrooms. Plant Dis., 105, 542–547. https://doi.org/10.1094/PDIS-06-20-1260-RE
- Wong, W.C., Fletcher, J.T., Unsworth, B.A., Preece, T.F. (1982). A note on ginger blotch, a new bacterial disease of the cultivated mushroom, Agaricus bisporus. J. Appl. Bacteriol., 52, 43–48. https://doi.org/10.1111/j.1365-2672.1982.tb04371.x
- Wong, W.C., Preece, T.F. (1982). Pseudomonas tolaasii in cultivated mushroom (Agaricus bisporus) crops: numbers of the bacterium and symptom development on mushrooms grown in various environments after artificial inoculation. J. Appl. Bacteriol., 53, 87–96. https://doi.org/10.1111/j.1365-2672.1982.tb04737.x
Downloads
Download data is not yet available.
-
Romualda Jabłońska-Ceglarek,
Anna Zaniewicz-Bajkowska,
Robert Rosa,
Jolanta Franczuk,
Organic fertilization and liming of soil versus lead content in vegetables
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 2 No. 1 (2003)
-
Bożena Szewczyk-Taranek,
Iwona Domagała-Świątkiewicz,
Anna Kapczyńska,
Paweł Marcinkowski,
Bożena Pawłowska,
Enhancing quality in Bidens ferulifolia: interplay of light extension and growth retardants in greenhouse cultivation
,
Acta Scientiarum Polonorum Hortorum Cultus: ONLINE FIRST
-
Abdollah Ghasemi Pirbalouti,
Fatemeh Malekpoor,
Azam Salimi,
Ahmadreza Golparvar,
Behzad Hamedi,
EFFECTS OF FOLIAR OF THE APPLICATION CHITOSAN AND REDUCED IRRIGATION ON ESSENTIAL OIL YIELD, TOTAL PHENOL CONTENT AND ANTIOXIDANT ACTIVITY OF EXTRACTS FROM GREEN AND PURPLE BASIL
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 16 No. 6 (2017)
-
Mirosława Chwil,
Renata Nurzyńska-Wierdak,
Stanisław Chwil,
Renata Matraszek,
Jarmila Neugebauerová,
HISTOCHEMISTRY AND MICROMORPHOLOGICAL DIVERSITY OF GLANDULAR TRICHOMES IN Melissa officinalis L. LEAF EPIDERMIS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 15 No. 3 (2016)
-
Ewa Dorota Zalewska,
Zofia Machowicz-Stefaniak,
Ewa Dorota Król,
ANTIFUNGAL ACTIVITY OF NANOPARTICLES AGAINST CHOSEN FUNGAL PATHOGENS OF CARAWAY
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 15 No. 6 (2016)
-
Cezary A. Kwiatkowski,
YIELD AND QUALITY OF CHAMOMILE (Chamomilla recutita (L.) Rausch.) RAW MATERIAL DEPENDING ON SELECTED FOLIAR SPRAYS AND PLANT SPACING
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 14 No. 1 (2015)
-
Nikolay Panayotov,
Anna Aladjadjiyan,
EFFECT OF LONG-TERM STORAGE OF PEPPER (Capsicum annuum L.) SEEDS ON THEIR VIABILITY MEASURED BY SELECTED THERMODYNAMIC PARAMETERS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 13 No. 2 (2014)
-
Sylwia Okoń,
Agnieszka Surmacz-Magdziak,
Edyta Paczos-Grzęda,
GENETIC DIVERSITY AMONG CULTIVATED AND WILD CHAMOMILE GERMPLASM BASED ON ISSR ANALYSIS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 12 No. 2 (2013)
-
Anita Biesiada,
Anna Tomczak,
USABILITY OF DIFFERENT TYPES AND CULTIVARS OF SALAD CHICORY (Cichorium intybus L. var. foliosum (Hegi) Bish.) FOR SPRING CULTIVATION
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 11 No. 1 (2012)
-
Tomo Milošević,
Nebojša Milošević,
Ivan Glišić,
Jelena Mladenović,
FRUIT QUALITY, PHENOLICS CONTENT AND ANTIOXIDANT CAPACITY OF NEW APRICOT CULTIVARS FROM SERBIA
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 11 No. 5 (2012)
<< < 53 54 55 56 57 58 59 60 61 62 > >>
You may also start an advanced similarity search for this article.