Skip to main navigation menu Skip to main content Skip to site footer

Vol. 18 No. 3 (2019)

Articles

ARBUSCULAR MYCORRHIZAL INOCULATION AND SHADING ENHANCE CROP PERFORMANCE AND QUALITY OF GREENHOUSE Begonia semperflorens

DOI: https://doi.org/10.24326/asphc.2019.3.2
Submitted: June 17, 2019
Published: 2019-06-17

Abstract

Mycorrhizal fungi are gaining interest in the floriculture sector due to the beneficial effects on a crop performance and ornamental quality. The aim of the current study was to assess the effect of inoculation with the arbuscular mycorrhizal (AM) fungi Rhizophagus irregularis on ornamental quality of Begonia × semperflorens-cultorum grown in two different protected cultivation systems: a shadehouse or glasshouse. The inoculated plants incurred a significant increase of plant height by 34.6%, lateral shoot length by 27.9%, number of lateral shoots by 41.2%, number of flowers per plant by 102.9%, flower diameter by 27.5%, and stems dry weight by 263.6%. High temperatures in the glasshouse negatively affected the AM root colonization. On the contrary, shading induced higher mycorrhizal colonization (48.6%) and increased plant height, number of lateral shoots, number of flowers per plant and flower diameter compared to the glasshouse environment. Taking all together, our results clearly demonstrated that mycorrhizal inoculation at transplanting and shading may be beneficial to floriculture growers wishing to produce high quality B. semperflorens-cultorum plants during the spring-summer season.

References

  1. Allen, M.F., Moore, T.S., Christensen, M. (1982). Phytohormone changes in Bouteloua gracilis infected by vesicular arbuscular mycorrhizae. 2. Altered levels of gibberellin-like substances and abscisic-acid in the host plant. Can. J. Bot., 60, 468–471.
  2. Asrar, A.A., Abdel-Fattah, G.M., Elhindi, K.M. (2012). Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica, 50, 305–316.
  3. Asrar, A.W.A., Elhindi, K.M. (2011). Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi J. Biol. Sci., 18, 93–98.
  4. AboulNasr, A. (1996). Effects of vesicular–arbuscular mycorrhiza on Tagetes erecta and Zinnia elegans. Mycorrhiza, 6, 61–64.
  5. Bendavid-Val, R., Rabinowitch, H.D., Katan, J., Kapulnik, Y. (1997) Viability of VA-mycorrhizal fungi following soil solarization and fumigation. Plant Soil, 195, 185–193.
  6. Biermann, B., Linderman, R.G. (1983). Effect o container plant growth medium and fertilizer phosphorus on establishment and host growth response to vesicular-arbuscular mycorrhizae. J. AM. Soc Hort. Sci., 108, 962–971.
  7. Biermann, B., Linderman, R.G. (1983a). Increased geranium growth using pretransplant inoculation with a mycorrhizal fungus. J. Am. Soc. Hortic. Sci., 108(6), 972–976.
  8. Beirmann, B., Linderman, R.G. (1983b). Effect of container plant growth medium and fertilizer phosphorus on establishment and host growth response to vesicular-arbuscular mycorrhizae. J. Am. Soc. Hortic. Sci., 108(6), 962–971.
  9. Bago, B., Pfeffer, P.E., Shachar-Hill, Y. (2000). Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol., 124, 949–958.
  10. Bailey, L.H. Bailey, E.Z. (1976). Begonia. In: Hortus Third: A concise dictionary of plants cultivated in the United States and Canada. MacMillan, New York, 142–154.
  11. Bowen, G.D. (1987). The biology and physiology of infection and its development. In: Ecophysiology of VA mycorrhizal plants, Safir, G.R. (ed.). CRC, Boca Raton, 27–70.
  12. Cantrell, I.C., Linderman, R.G. (2001). Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil, 233, 269–281.
  13. Cassaniti, C., Li Rosi, A., Romano, D. (2009). Salt tolerance of ornamental shrubs mainly used in the Mediterranean landscape. Acta Hortic., 807, 675–680.
  14. Chang, D.C.N. (1992). What is the potential for management of vesicular arbuscolar mycorrhizae in horticulture. In: Proc. Intl. Symp. Management of Mycorrhizas in Agriculture, Horticulture and Forestry, Perth, Wester Australia, Robson, A.D., Abbott, L.K., Malajczuk, N. (eds.). Kluwer, Dordrecht, 187–190.
  15. Compant, S., van der Heijden, M.G.A., Sessitsch, A. (2010). Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol., 73, 197–214.
  16. Dole, J.M., Wilkins, H.F. (2005). Floriculture principles and species. Prentice Hall, p. 1023.
  17. Dugassa, G.D., von Alten, H., Schonbeck, F. (1996). Effects of arbuscular mycorrhiza (AM) on health of Linum usitatissimum L. infected by fungal pathogens. Plant Soil, 185, 173–182.
  18. Entry, J.A., Rygiewicz, P.T., Watrud, L.S., Donnelly, P.K. (2002). Influence of adverse soil conditions on the formation and function of arbuscular mycorrhizas. Adv. Environ. Res., 7, 123–138.
  19. Feldmann, F., Kapulnik, Y., Baar, J. (eds.), (2008). Mycorrhiza works. DPG Selbstverlag, Braunschweig.
  20. Gange, A.C., Ayres, R.L. (1999). On the relation between arbuscular mycorrhizal colonization and plant ‘benefit’. Oikos, 87, 615–621.
  21. Garmendia, I., Mangas, V.J. (2012). Application of arbuscular mycorrhizal fungi on the production of cut flower roses under commercial-like conditions. Span. J. Agric. Res., 10, 166–174.
  22. Gaur, A., Gaur, A., Adholeya, A. (2000). Growth and flowering in Petunia hybrida, Callistephus chinensis and Impatiens balsamina inoculated with mixed AM inocula or chemical fertilizers in a soil of low P fertility. Sci. Hortic., 84, 151–162.
  23. Gaur, A., Adholeya, A. (2005). Diverse response of five ornamental plant species tomixed indigenous and single isolate arbuscular–mycorrhizal inocula in marginal soil amended with organic matter. J. Plant Nutr., 28, 707–723.
  24. Gavito, M.E., Olsson, P.A., Rouhier, H., Medina-Rpnafiel, A., Jakobsen, I., Bago, A., Azcon-Aguilar, C. (2005). Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytol., 168, 179–188.
  25. Gianinazzi, S., Gollotte, A., Binet, M.N., van Tuinen, D., Redecker, D., Wipf, D. (2010). Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 20, 519–530.
  26. Hamrick, D. (2003). Ball Redbook. Crop production. Ball Publishing, Batavia, p. 724.
  27. Haugen, L.M., Smith, S.E. (1992). The effect of high temperature and fallow period on infection of mung bean and cashew roots by the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. Plant Soil, 145, 71–80.
  28. Heinemeyer, A., Fitter, A.H. (2004). Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth responses of the host plant and its AM fungal partner. J. Exp. Bot., 55, 525–534.
  29. Heinemeyer, A., Ridgway, K.P., Edwards, E.J., Benham, D.G., Young, P.W., Fitter, A.H. (2004). Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland community. Global Change Biol., 10, 52–64.
  30. Hunter, M.N. (1997). Mycorrhizae the wonder fungi. Aust. Hortic., 95, 96–103.
  31. Iapichino, G., Arnone, M., Bertolino, M., Amico Roxas, U. (2006). Propagation of three Thymus species by stem cuttings. Acta Hortic., 723,411–414.
  32. Jahromi, F., Aroca, R., Porcel, R., Ruiz-Lozano, J.M. (2008). Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb. Ecol., 55, 45–53.
  33. Jeong, K.Y., Claudio, C. Pasian, C.C., McMahon, M., Tay, D. (2009). Growth of six Begonia species under shading. Open Hortic. J., 2, 22–28.
  34. Koide, R.T., Landherr, L.L., Besmer, Y.L., Detweiler, J.M., Holcomb, E.J. (1999). Strategies for mycorrhizal inoculation of six annual bedding plant species. HortScience, 34, 1217–1220.
  35. Koltai, H. (2010). Mycorrhiza in floriculture: difficulties and opportunities. Symbiosis, 52, 55–63.
  36. Kormanik, P.P., McGraw, A.C. (1991). Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: Methods and principles of mycorrhizal research, Schenck, N.C. (ed.). APS Press, St. Paul, 37–45.
  37. Kumar, P., Lucini, L., Rouphael, Y., Cardarelli, C., Kalunke, R.M., Colla, G. (2015). Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato. Front Plant Sci., 6, 477. DOI: 10.3389/fpls.2015.00477
  38. Linderman, R.G., Davis, E.A. (2003). Arbuscular mycorrhiza and growth responses of several ornamental plants grown in soilless peat-based medium amended with coconut dust (coir). HortTechnology, 13(3), 482–487.
  39. Linderman, R.G., Davis, E.A. (2004). Varied response of marigold (Tagetes spp.) genotypes to inoculation with different arbuscular mycorrhizal fungi. Sci. Hortic., 99, 67–78.
  40. Long, L.K., Yao, Q., Huang, Y.H., Yang, R.H., Guo, J., Zhu, H.H. (2010). Effects of arbuscular mycorrhizal fungi on zinnia and the different colonization between Gigaspora and Glomus. World J. Microb. Biot., 26, 1527–1531.
  41. Lopez, J., Gonzalez, A., Fernandez, J.A., Banon, S. (2006). Ornamental use of Labiates for xeriscape in Mediterranean area. Acta Hortic., 723, 459–464.
  42. Martin, C.A., Stutz, J.C. (2004). Interactive effects of temperature and arbuscular mycorrhizal fungi on growth, P uptake and root respiration of Capsicum annuum L. Mycorrhiza, 14, 241–244.
  43. Meir, D., Pivonia, S., Levita, R., Dori, I., Ganot, L., Meir, S., Salim, S., Resnick, N., Wininger, S., Shlomo, E., Koltai, H. (2010). Application of mycorrhizae to ornamental horticultural crops: lisianthus (Eustoma grandiflorum) as a test case. Span. J. Agric. Res., 8, S5–S10.
  44. Miransari, M. (2010). Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol., 12, 563–569.
  45. Ouziad, F., Hildebrandt, U., Schmelzer, E., Bothe, H. (2005). Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J. Plant Physiol., 162, 634–649. DOI: 10.1016/j.jplph.2004.09.014
  46. Perner, H., Schwarz, D., Bruns, C., Mader, P., George, E. (2007). Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza, 17, 469–474.
  47. Phillips, J.M., Haymann, D.S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc., 55, 158–161.
  48. Püschel, D., Rydlová, J., Vosátka, M. (2014). Can mycorrhizal inoculation stimulate the growth and flowering of peat-grown ornamental plants under standard or reduced watering? Appl. Soil Ecol., 80, 93–99.
  49. Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., De Pascale, S., Bonini, P., Colla, G. (2015). Arbuscular mycorrhizal fungi acts as biostimulants in horticultural crops. Sci. Hortic., 188, 97–105.
  50. Sabatino, L., D’Anna, F., Iapichino, G. (2014). Cutting type and IBA treatment duration affect Teucrium fruticans adventitious root quality. Not. Bot. Horti Agrobot. Cluj-Napoca, 42, 478–481.
  51. Sawers, R.J.H., Gutjahr, C., Paszkowski, U. (2008). Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends Plant Sci., 13(2), 93–97.
  52. Schüßler, A., Schwarzott, D., Walker, C. (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res., 105, 1413–1421.
  53. Shahabivand, S., Maivan, H.Z., Goltapeh, E.M., Sharifi, M., Aliloo, A.A. (2012). The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity. Plant Physiol. Biochem., 60, 53–58. DOI:10.1016/j.plaphy.2012.07.018
  54. Smith, S.E., Read, D.J. (2008). Mycorrhizal symbiosis. Academic Press, Cambridge, 605.
  55. Sohn, B.K., Kim, K.Y., Chung, S.J., Kim, W.S., Park, S.M., Kang, J.G., Rim, Y.S., Cho, J.S., Kim, T.H., Lee, J.H. (2003). Effect of the different timing of AMF inoculation on plant growth and flower quality of chrysanthemum. Sci. Hortic., 98, 173–183.
  56. Srámek, F., Dubský, M., Vosátka, M. (2000). Effect of arbuscular mycorrhizal fungi and Trichoderma harzianum on three species of balcony plants. Rost. Vyroba, 46, 127–131.
  57. Torta, L., Mondello, V. Burruano, S. (2003). Valutazione delle caratteristiche morfo-anatomiche di alcune simbiosi micorriziche mediante tecniche colorimetriche usuali e innovative. Micol. Ital., 2, 53–59.
  58. Vaingankar, J.D., Rodrigues, B.F. (2012). Screening for efficient AM (arbuscular mycorrhizal) fungal bioinoculants for two commercially important ornamental flowering plant species of Asteraceae. Biol. Agric. Hortic., 28, 167–176.
  59. Vosátka, M. (1995). Influence of inoculation with arbuscular mycorrhizal fungi on the growth and mycorrhizal infection of transplanted onion. Agric. Ecosyst. Environ., 53, 151–159.
  60. Vosátka, M., Jansa, J., Regvar, M., Šrámek, F., Malcová, R. (1999). Inoculation with mycorrhizal fungi a feasible biotechnology for horticulture. Phyton-Ann. Rei Bot. A, 39, 219–224.
  61. Vosátka, M., Albrechtová, J. (2008). Theoretical aspects and practical uses of mycorrhizal technology in floriculture and horticulture. In: Floriculture, ornamental and plant biotechnology, Teixeira da Silva, J.A. (eds.). Global Science Books, Middlesex, 466–479.
  62. Zhu, X.C., Song, F.B., Liu, S.Q., Liu, T.D. (2011). Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant Soil, 346, 189–199.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.