Skip to main navigation menu Skip to main content Skip to site footer

Vol. 20 No. 3 (2021)

Articles

CHITOSAN AGAINST TO BORON TOXICITY IN MAIZE

DOI: https://doi.org/10.24326/asphc.2021.3.1
Submitted: December 9, 2019
Published: 2021-06-30

Abstract

In this study; growth, chlorophyll, carotenoid, proline and MDA contents, the amounts of reactive oxygen species (ROS) (superoxide (O2.-) and hydrogen peroxide (H2O2)), and antioxidants (superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) activities and its isoenzyme profiles, (ascorbate (AsA), dehydro ascorbate (DHA) and glutathione (GSH)) quantities in maize plants ((Zea mays L. cv. Hido) exposed to boron toxicity (B) (8 mM B(OH)3)  and B+chitosan (0.01%, foliar (A) and seed soaking (B) applications) conditions in hydroponic culture have been studied comparatively. Boron toxicity significantly reduced growth parameters, chlorophyll, carotenoid, AsA, DHA and CAT activity while increased proline, MDA, oxidants (O2.- and H2O2), SOD, POD, APX and GR activities and GSH levels. B+Chitosan A and B applications significantly reversed the B toxicity-based inhibition in these parameters. It has been suggested that chitosan can be used as a reliable chemical for boron toxicity in maize, since chitosan applications (A and B) cause improvements in terms of all the parameters in the damage caused by B toxicty.

References

  1. Balal, R.M., Shahid, M.A., Javaid, M.M., Iqbal, Z., Liu, G.D., Zotarelli, L., Khan, N. (2017). Chitosan alleviates phytotoxicity caused by boron through augmented polyamine metabolism and antioxidant activities and reduced boron concentration in Cucumis sativus L. Acta Physiol. Plant, 39(1), 31.
  2. Bates, L., Waldren, R., Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205–207.
  3. Beuchamp, C., Fridovich, I. (1971). Isozymes of superoxide dismutase from wheat germ. Biochim. Biophys. Acta, 317, 50–64.
  4. Brown, P.H., Bellaloui, N., Wimmer, M.A., Bassil, E.S., Ruiz, J., Hu, H., Pfeffer, H., Dannel, F., Romheld, V. (2002). Boron in plant biology. Plant Biol., 4, 205–223.
  5. Cervilla, L., Blasco, B., Ríos, J., Rosales, M., Rubio-Wilhelmi, M., Sánchez-Rodríguez, E., Romero, L., Ruiz, J. (2009). Response of nitrogen metabolism to boron toxicity in tomato plants. Plant Biol., 11(5), 671–677.
  6. Chamnanmanoontham, N., Pongprayoon, W., Pichayangkura, R., Roytrakul, S., Chadchawan, S. (2015). Chitosan enhances rice seedling growth via gene expression network between nucleus and chloroplast. Plant Growth Regul., 75, 101–114.
  7. Chen, M., Mishra, S., Heckathorn, S.A., Frantz, J.M., Krause, C. (2014). Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis, carbohydrate metabolism, and protein synthesis. J. Plant Physiol., 171, 235–242.
  8. Costa, P., Neto, A., Bezerra, M. (2005). Antioxidantenzymatic system of two sorghum genotypes differing in salt tolerance. Braz. J. Plant Physiol., 17(4), 353–362.
  9. Elstner, E.F., Heupel, A. (1976). Inhibition of nitrate formation from hydroxylammonium chloride: a simple assay for superoxide dismutase. Anal. Biochem., 70, 616–620.
  10. Farouk, S., Amany, A.R. (2012). Improving growth and yield of cowpea by foliar application of chitosan under water stress. Egypt. J. Biol., 14, 14–16.
  11. Foyer, C., Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 133, 21–25.
  12. Gong, Y., Toivonen, P.M.A., Lau, O.L., Wiersma, P.A. (2001). Antioxidant system level in ‘Braeburn’ apple in related to its browing disorder. Bot. Bull. Acad. Sin., 42, 259–264.
  13. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A. (2012). Role of proline under changing environments: a review. Plant Signal. Behav., 7(11), 1456–1466.
  14. Laemmli, D.K. (1970). Cleavage of structural proteins during in assembly of the heat of bacteriophage T4. Nature, 227, 680.
  15. Lee, J., Scagel, C.F. (2009). Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem., 115, 650–656.
  16. Loreto, F., Velikova, V. (2001). Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol., 127, 1781–1787.
  17. Mittler, R., Zilinskas, B.A. (1993). Detection of ascorbate peroxidase activity in native gels by ınhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal. Biochem., 212(2), 540–546.
  18. Mondal, M.M.A., Malek, M.A., Puteh, A.B., Ismail, M.R., Ashrafuzzaman, M., Naher, L. (2012). Effect of foliar application of chitosan on growth and yield in okra. Austral. J. Crop Sci., 6(5), 918–92.
  19. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22, 867–880.
  20. Pichyangkura, R., Chadchawan, S. (2015). Biostimulant activity of chitosan in horticulture. Sci. Hortic., (Amst.) 196, 49–65.
  21. Povero, G., Loreti, E., Pucciariello, C., Santaniello, A., Di Tommaso, D., Di Tommaso, G., Kapetis, D., Zolezzi, F., Piaggesi, A., Perata, P. (2011). Transcript profiling of chitosan-treated Arabidopsis seedlings. J. Plant Res., 124, 619–629.
  22. Rasha, M. El-Shazoly., Ashraf, A. Metwally., Afaf, M. Hamada. (2019). Salicylic acid or thiamin increases tolerance to boron toxicity stress in wheat. J. Plant Nutr., 42(7), 702–722.
  23. Rejeb, K.B., Abdelly, C., Savouré, A. (2014). How reactive oxygen species and proline face stress together. Plant Physiol. Biochem., 80, 278–284.
  24. Safikhan, S., Khoshbakht, K., Chaichi, M.R., Amini, A., Motesharezadeh, B. (2018). Role of chitosan on the growth, physiological parameters and enzymatic activity of milk thistle (Silybum marianum (L.) Gaertn.) in a pot experiment. J. Appl. Res. Med. Aromat. Plants, 10, 49–58.
  25. Sarabandi, M., Farokhzad, A., Mandoulakani, B.A., Ghasemzadeh, R. (2019). Biochemical and gene expression responses of two Iranian grape cultivars to foliar application of methyl jasmonate under boron toxicity conditions. Sci. Hortic., 249, 355–363.
  26. Seth, K., Aery, N.C. (2017). Boron induced changes in biochemical constituents, enzymatic activities, and growth performance of wheat. Acta Physiol. Plant., 39(11), 244.
  27. Sun, T., Xie, W., Xu, P. (2004). Superoxide anion scavenging activity of graft chitosan derivatives. Carbohydr. Polym., 58(4), 379–382.
  28. Wang, J.Z., Tao, S.T., Qi, K.J., Wu, J., Wu, H.Q., Zhang, S.L. (2011). Changes in photosynthetic properties and antioxidative system of pear leaves to boron toxicity, Afr. J. Biotechnol., 10(85), 19693–19700.
  29. Witham, F.H., Blaydes, B.F., Devlin, R.M. (1971). Experiments in plant physiology. Van Nostrand Reinhold, New York, pp. 167–200.
  30. Woodbury, W., Spencer, A., Stahman, M. (1971). An improved procedure using ferricyanide for detecting catalase isozymes. Anal. Biochem., 44(1), 301–305.
  31. Wu, T., Hsu, Y., Lee, T. (2009). Effects of cadmium on the regulation of antioxidant enzyme activity, gene expression, and antioxidant defenses in the marine macroalga Ulva fasciata. Bot. Stud., 50, 25–34.
  32. Xia, X.J., Huang, L.F., Zhou, Y.H., Mao, W.H., Shi, K., Wu, J.X., Asami, T., Chen, Z., Yu, J.Q. (2009). Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta, 230, 1185–1196.
  33. Van, S.N., Minh, H.D., Anh, D.N. (2013). Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatal. Agric. Biotechnol., 2(4), 289–294.
  34. Yee, Y., Tam, N.F.Y., Wong, Y.S., Lu, C.Y. (2002). Growth and physiological responses of two mangrove species (Bruguira gymnorrhiza and Kandelia candel) to waterlogging. Environ. Exp. Bot., 1–13.
  35. Zhang, H., Zhao, X., Yang, J., Yin, H., Wang, W., Lu, H., Du, Y. (2011). Nitric oxide production and its functional link with OIPK in tobacco defense response elicited by chitooligosaccharide. Plant Cell Rep., 30, 1153–1162.

Downloads

Download data is not yet available.

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.