Skip to main navigation menu Skip to main content Skip to site footer

Vol. 13 No. 5 (2014)

Articles

CULTIVABLE MICROORGANISMS INHABITING THE AERIAL PARTS OF Hypericum perforatum

Submitted: November 30, 2020
Published: 2014-10-31

Abstract

The present investigation was carried out to analyse the presence of endophytes in the above-ground parts of Hipericum perforatum and to analyse the biodiversity and enumeration of epiphytes. Plant material was collected in Poland three times during the growing season. Phenotypic and genotypic diversity of all the endophytes and the most abundant epiphytes were researched. We analysed fungistatic activity of this isolates. From the endosphere of tested plant Alcaligenes  faecalis and Bacillus licheniformis were isolated. The most numerous epiphytes were the copiotrophs and a bit less numerous were oligotrophs, bacteria cultivated on Bunt and Rovir’s medium and fungi. The least numerous bacteria were Azotobacter sp. Among all the molds dominant were: Cladosporium

herbarum, C. cladosporioides and Alternaria consortialis, A. alternata, Clonostachys rosea f. catenulata (Gliocladium catenulatum), Scopulariopsis brevicaulis and Penicillium terrestre. Among phyllobacteria there were found mostly the following species: Burkholderia cepacia, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas fluorescens, P. putida, Pantoea agglomerans, Paenibacillus polymyxa, Bacillus cereus, Rhodococcus sp., R. erythropolis and Cellulosimicrobium cellulans. The broadest spectrum of antifungal activity was examined for the following species: Paenibacillus polymyxaPseudomonas putida and Pantoea agglomerans. P. polymyxa limited the growth of over 82% tested molds, so did the other two strains: P. agglomerans over 77% and P. putida over 73%.

References

Amir H., Isnard C., Duhet D., Cabalion P., 2007. Phyllosphere microflora of Aloe vera New Caledonia. Asian J. Plant Sci., 6, 108–114.
Bacon C.W., Hinton D.A., 2006. Bacterial endophytes: The endophytic niche, its occupants, and its utility. In: Plant associated bacteria, Gnanamanickam S.S. (ed.). Springer, 155–194.
Beatty P.H., Jansen S.E., 2002. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can. J. Microbiol., 48, 159–169.
Bunt S.J., Rovera A.D., 1955. Microbiological studies of some subantarctic soil. J. Soil Sci., 6, 119–128.
Cho K.M., Hong S.Y., Lee S.M., Kim Y.H., Kahng G.G., Lim Y.P., Kim H., Yun H.D., 2007. Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. Microb. Ecol., 54, 341–351.
Dias A.C.P., Tomás-Barberán F.A., Fernandes-Ferreira M., Ferreres F., 1998. Unusual flavonoids produced by callus of Hypericum perforatum. Phytochemistry, 48, 1165–1168.
Fassatiová O., 1983. Grzyby mikroskopowe w mikrobiologii technicznej. Wyd. Nauk.-Techn., Warszawa.
Gilman J.C., 1957. A manual of soil fungi. The Iowa State College Press-Ames, Iowa.
Gnanamanickam S.S., Immanuel J.E., 2006. Epiphytic bacteria, their ecology and functions. In: Plant associated bacteria, Gnanamanickam S.S. (ed.). Springer, 131–155.
Greeson J.M., Sanford B., Monti D.A., 2001. St. John’s wort (Hypericum perforatum): a review of the current pharmacological, toxicological, and clinical literature. Psychopharmacology, 153, 402–414.
Haggag W.M., 2008. Isolation of bioactive antibiotic peptides from Bacillus brevis and Bacillus polymyxa against Botrytis grey mould in strawberry. Arch. Phytopathol. Plant Protect., 41, 477–491.
Hegazi N.A., Amer H.A., Monib M., 1979. Enumeration of N2-fixing spirylla. Soil. Biol. Biochem., 11, 437– 443.
Hirano S.S., Upper C.D., 2000. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae – a pathogen, ice nucleus, and epiphyte. Microbiol. Mol. Biol. Rev., 64, 624–653.
Honda N., Hirai M., Ano T., Shoda M., 1998. Antifungal effect of a heterotrophic nitrifier Alcaligenes faecalis. Biotechnol. Lett., 20, 703–705.
Hung P.Q., Annapurna K., 2004. Isolation and characterization of endophytic bacteria in soybean (Glycine sp.). Omonrice, 12, 92–101.
Jacobs J.L., Sundin G.W., 2001. Effect of solar UV-B radiation on a phyllosphere bacterial community. Appl. Environ. Microbiol., 67, 5488–5496.
Jacques M.A., Morris C.E., 1995. A review of issues related to the quantification of bacteria from the phyllosphere. Fems Microbiol. Ecol., 18, 1–14.
Karamanoli K., Vokou D., Menkissoglu U., Constantinidou H.-I., 2000. Bacterial colonization of phyllosphere of Mediterranean aromatic plants. J. Chem. Ecol., 26, 2035–2048.
Karamanoli K., Menkissoglu-Spiroudi U., Bosabalidis A.M., Vokou D., Constantinidou H.I.A., 2005. Bacterial colonization of the phyllosphere of nineteen plant species and antimicrobial activity of their leaf secondary metabolites against leaf associated bacteria. Chemoecology, 15, 59–67.
King E.O., Ward M.K., Raney D.E., 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med., 44, 301–307.
Koch A., 2001. Oligotrophs versus copiotrophs. Bioessays, 23, 657–661.
Kurkin V.A., Pravdivtseva O.E., 2007. Flavonoids from the aerial part of Hypericum perforatum. Chem. Nat. Comp., 43, 620–621.
Kusari S., Lamshoft M., Zuhlke S., Spitller M., 2008. An endophytic fungus from Hypericum perforatum that produces hypericin. J. Nat. Prod., 71, 159–162.
Langer U., Böhme L., Böhme F., 2004. Short communication. Classification of soil microorganisms based of growth properties: a critical view of some commonly used terms. J. Plant Nutr. Soil Sci., 167, 267–269.
Li B., Yu R., Tang Q., Su T., Chen X., Zhu B., Wang Y., Xie G., Sun G., 2011. Biofilm formation ability of Paenibacillus polymyxa and Paenibacillus macerans and their inhibitory effect against tomato bacterial wilt. Afr. J. Microbiol. Res., 5, 4260–4266.
Lindow S.E., Brandl M.T., 2003. Microbiology of the phyllosphere. Appl. Environ. Microb., 69, 1875–1833.
Liu C.H., Chen X., Liu T.T., Lian B., Gu Y., Caer V., Xue Y.R., Wang B.T., 2007. Study of the antifungal activity of Acinetobacter baumannii. Appl. Microbiol. Biot., 76, 459–66.
Mageshwaran V., Mondal K.K., Kumar U., Annapurna K., 2012. Role of antibiosis on suppression of bacterial common blight disease in French bean by Paenibacillus polymyxa strain HKA-15. Afr. J. Biotechnol., 11, 12389–12395.
Martin J.P., 1950. Use of acid, rose bengal and streptomycin in the plane method for estimating soil fungi. Soil Sci., 69, 215–232.
Marchesi J.R., Takuichi S., Weightman A.J., Martin T.A., Fry J.C., Hiom S.J., Wade W.G., 1997. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microb., 64, 795–799.
Mazandarani M., Yassaghi S., Resaei M.B., Mansourian A.R., Ghaemi E.O., 2007. Ethnobotany and antibacterial activities of two endemic species of Hypericum in North-East of Iran. Asian J. Plant Sci., 6, 354–358.
Milosevic T., Solujic S., Sukdolak S., 2007. In vitro study of ethanolic extract of Hypericum perforatum L. on growth and sporulation of some bacteria and fungi. Turk. J. Biol., 31, 237–241.
Nielsen P., Sørensen J., 1996. Multi-target and medium-dependent fungal antagonism by hydrolytic enzymes in Paenibacllus polymyxa and Bacillus pumilus strains from barlej rhizosphere. Fems Microbiol. Ecol., 22, 183–192.
Osborn F., Berlioz L., Vitelli-Flore J., Monsalve W., Dorta B., Rodriguez Lemoine V., 2002. Pathogenic effect of bacteria isolated from larvae of Hylesia metabus crammer (Lepidoptera: Saturniidae). J. Invertebr. Pathol., 8, 7–12.
Piontek M., 1999. Atlas grzybów pleśniowych. Wyd. Polit. Zielonogórskiej.
Rekosz-Burlaga H., Garwolińska M., 2006. Characterization of selected group of microorganisms occurring in soil rhizosphere and phyllosphere of Atos. Pol. J. Microbiol., 55, 227–235.
Rodina A.G., 1967. Microbiological water testing methods. PWRiL, Warsaw.
Schempp C.M., Pelz K., Wittmer A., Schöpf E., Simon J.C., 1999. Antibacterial activity of hyperforin from St John’s wort, against multiresistant Staphylococcus aureus and gram-positive bacteria. The Lancet, 353, 1229.
Schut F., Prins R.A., Gottschal J.C., 1997. Oligotrophy and pelagic marine bacteria: facts and fiction. Aquat. Microb. Ecol., 2, 177–202.
Sgroy V., Cassán F., Masciarelli O., Florencia M., Papa D., Lagares A., Luna V., 2009. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasisregulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl. Microbiol. Biot., 85, 371–381.
Silva B.A., Malva J.O., Dias A.C.P., 2008. St. John’s Wort (Hypericum perforatum) extracts and isolated phenolic compounds are effective antioxidants in several in vitro models of oxidative stress. Food Chem., 110, 611–619.
Slepecky R.A., Hemphill H.E., 2006. The genus Bacillus. Non-medical. In: Dworkin M., Falkow S., Rosenberg E., Schleifer K.H. (eds.). The Prokaryotes, Stackebrandt.
Turek S., 2005. St. John’s wort-active compounds and potential medical application. Post. Fitoterapii, 3–4, 80–86. Borgis. Publ.
Whipps J.M., Hand P., Pink D., Bending G.D., 2008. Phyllosphere microbiology with special reference to diversity and plant genoptype. J. Appl. Microbiol., 105, 1744–1755.
Zimowska B., Machowicz-Stefaniak Z., 2004. Grzyby zagrażające uprawie dziurawca pospolitego (Hypericum perforatum L.) w województwie Lubelskim. Acta Sci. Pol., Hortorum Cultus, 3, 61–74.
Zimowska B., 2004a. Occurrence, biology and some morphology elements of Seimatosporium hypericinum, a pathogen of St. John’s wort (Hypericum perforatum). Phytopathol. Pol., 34, 41–50.
Zimowska B., 2004b. Biotic effect of phyllospheric fungi on the growth and development of Seimatosporium hypericum (Ces.) Sutton. EJPAU, 7(2) www.ejpau.media.pl.
Zimowska B., 2007. Fungi colonizing and damaging different parts of peppermint (Mentha piperita L.) cultivated in South-Eastern Poland. Herba Pol., 53(4), 97–106.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 10 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.