Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 1 (2022)

Articles

Examination of morphological and molecular changes in tomato (Solanum lycopersicum L.) seedlings with the application of tebuconazole

DOI: https://doi.org/10.24326/asphc.2022.1.6
Submitted: January 31, 2021
Published: 2022-02-28

Abstract

This study aims to determine the effects of tebuconazole substance used at different doses on the quality of tomato seedlings, retrotransposon mobility caused by this substance in the plants and its genotoxic effects and to determine the optimum dose to be used in practice in seedling production. Tebuconazole applied different concentrations (25, 50, 75, 100, 125 and 150 ppm) were tested. According to the study results, the seedling length and stem length significantly according to the applied doses. The study found out that the stem, leaf and root dry matter contents and leaf chlorophyll content (SPAD values) also statistically significantly changed based on the applied doses. According to the data obtained, the lowest seedling length (12.68 cm) and stem length (4.75 cm) were obtained from a dose of 150 ppm. The highest dry matter content in seedlings was obtained at a dose of 50 ppm in stem (22%) and at 0 ppm (control) in leaves (25.01%) and root. In the study, the highest leaf chlorophyll content (SPAD values) was determined at doses of 150 ppm, 125 ppm and 75 ppm, respectively. This study revealed that various doses of tebuconazole had a positive effect on controlling the height of tomato seedlings and specific quality characteristics of seedlings. In addition, molecular analyzes showed that polymorphism ratios in plants that were applied the substance at different doses varied between 4.70% and 38.09% and the GTS (genomic template stability) value varied between 61.91% and 95.30%. Analyses indicated that the polymorphism ratio increased depending on the increase in dose whereas the GTS value decreased.

References

  1. Akdemir, S. (2018). Effects of paclobutrazol and prohexadione–calcium applications on lettuce (Lactuca sativa L.) seedlings quality and plant growth. MSc Dissertation, Kırşehir Ahi Evran University, Kırşehir.
  2. Angers, B., Castonguay, E., Massicotte, R. (2010). Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol. Eco., 19(7), 1283–1295. https://doi.org/10.1111/j.1365-294x.2010.04580.x DOI: https://doi.org/10.1111/j.1365-294X.2010.04580.x
  3. Atienzar, F.A., Conradi, M., Evenden, A.J., Jha, A.N., Depledge, M.H. (1999). Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[a]pyrene. Environ. Toxicol. Chem., 18(10), 2275–2282. https://doi.org/10.1002/etc.5620181023 DOI: https://doi.org/10.1002/etc.5620181023
  4. AOAC – Association of Official Agriculture Chemists (1980). Official methods of analysis, 13th ed., Washington D.C., USA.
  5. Baninasab, B. (2009). Amelioration of chilling stress by paclobutrazol in watermelon seedlings. Sci. Hortic., 121(2), 144–148. https://doi.org/10.1016/j.scienta.2009.01.028 DOI: https://doi.org/10.1016/j.scienta.2009.01.028
  6. Bennetzen, J.L. (2000). Transposable elements contributions to plant gene and genome evolution. Plant Mol. Biol., 42(1), 251–269. https://doi.org/10.1023/A:1006344508454 DOI: https://doi.org/10.1007/978-94-011-4221-2_13
  7. Berova, M., Zlatev, Z. (2000). Physiological response and yield of paclobutrazol treated tomato plants (Lycopersicon esculentum Mill.). Plant Growth Regul., 30(2), 117–123. https://doi.org/10.1023/A:1006300326975 DOI: https://doi.org/10.1023/A:1006300326975
  8. Brigard, J.P., Harkess, R.L., Baldwin, B.S. (2006). Tomato early seedling height control using a paclobutrazol seed soak. Horti Sci., 41(3), 768–772. https://doi.org/10.21273/HORTSCI.41.3.768 DOI: https://doi.org/10.21273/HORTSCI.41.3.768
  9. Bulut, H., Öztürk, H.İ., Dursun, A. (2021). Determination of the effect of tebuconazole applications on cucumber (Cucumis sativus L.) seedling via morphological and molecular methods. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 24(5), 969–977. https://doi.org/10.18016/ksutarimdoga.vi.754689 DOI: https://doi.org/10.18016/ksutarimdoga.vi.754689
  10. Çopur, H., Sari, N. (2012). Sera hıyar fidesi üretiminde paclobutrazol ve bakır sülfat uygulamalarının fide büyümesi uzerine etkileri [The effects of paclobutrazol and copper sulfate on growth of greenhouse Cucumber seedling production]. J. Agric. Fac., Ç.Ü. 27(1), 1–12 [in Turkish].
  11. Demir, İ., Balkaya, A., Yılmaz, K., Onus, A.N., Uyanık, M., Kaycıoğlu, M., Bozkurt, B. (2010). Sebzelerde tohumluk ve fide üretimi. TMMOB Chamber of Agricultural Engineers, VII. Turkey Agricultural Engineering Technical Congress, 11–15 January 2010, Ankara.
  12. Fedoroff, N. (2000). Transposons and genome evolutions in plants. PNAS, 97(13), 7002–7007. https://doi.org/10.1073/pnas.97.13.7002 DOI: https://doi.org/10.1073/pnas.97.13.7002
  13. Fletcher, R.A., Gilley, A., Sankhla, N., Davis, T.D. (2000). Triazoles as plant growth regulators and stress protectants. Hortic Rev., 24, 55–138. DOI: https://doi.org/10.1002/9780470650776.ch3
  14. Garner, L.C., Björkman, T. (1996). Mechanical conditioning for controlling excessive elongation in tomato transplants: sensitivity to dose, frequency, and timing of brushing. J. Am. Soc. Hort. Sci., 121(5), 894–900. https://doi.org/10.21273/jashs.121.5.894 DOI: https://doi.org/10.21273/JASHS.121.5.894
  15. Geboloğlu, N., Durukan, A., Sağlam, N., Doksöz, S., Şahin, S., Yılmaz, E. (2015). Patlıcanda fide gelişimi ve fide kalitesi ile paclobutrazol uygulamaları arasındaki ilişkiler [Relationships between eggplant seedling growth and quality with paclobutrazol applications]. IJANS, 8(1), 62–66 [in Turkish].
  16. Głowacka, B. (2004). The effect of blue light on the height and habit of the tomato (Lycopersicon esculentum Mill.) transplant. Folia Hortic., 16(2), 3–10.
  17. Kılıç, O., Çopur, U., Göktay, S. (1991). Fruit and vegetable processing technology application guide. Uludağ University, Fac. of Agric., Lecture Notes, 7, 143.
  18. Melton, R.R., Dufault, R.J. (1991). Tomato seedling growth, earliness, yield, and quality following pretransplant nutritional conditioning and low temperatures. J. Am. Soc. Hortic. Sci., 116(3), 421–425. https://doi.org/10.21273/jashs.116.3.421. DOI: https://doi.org/10.21273/JASHS.116.3.421
  19. Mohsin, S.M., Hasanuzzaman, M., Bhuyan, M.H.M.B., Parvin, K., Fujita, M. (2019). Exogenous tebuconazole and trifloxystrobin regulates reactive oxygen species metabolism toward mitigating salt-induced damages in cucumber seedling. Plants, 8(10), 428. https://doi.org/10.3390/plants8100428 DOI: https://doi.org/10.3390/plants8100428
  20. de Moraes, P.J., Saraiva Grossi, J.A., de Araújo Tinoco, S., Henriques da Silva, D.J., Cecon, P.R., Barbosa, J.G. (2005). Ornamental tomato growth and fruiting response to paclobutrazol. Acta Hortic., 683, 327–332. https://doi.org/10.17660/actahortic.2005.683.40 DOI: https://doi.org/10.17660/ActaHortic.2005.683.40
  21. Öztürk, H.İ., Bulut, H. (2020). The effect of tebuconazole applications on melon seedling quality and development. Erzincan Üniv., Fen Bil. Enst. Derg., 13(3), 1177–1186. https://doi.org/10.18185/erzifbed.757542 DOI: https://doi.org/10.18185/erzifbed.757542
  22. Öztürk, H.İ., Dursun, A. (2020). Tebuconazole uygulamalarının patlıcan (Solanum melongena L.)’da fide boyu ve kalitesine etkisi Buğday (Triticum aestivum L.) tohumlarında büyüme düzenleyicisi 2,4-D isooctylester herbisitinin meydana getirdiği retrotranspozon hareketliliğinin moleküler yöntem İle değerlendirilmesi. Manas J. Agr. Vet. Life Sci., 10(1), 25–32 [in Turkish].
  23. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., Allard, R.W. (1984). Ribosomal DNA spacer-length polymorphism in barley, mendelian inheritance, chromosomal location, and population dynamics. Proc. Nation. Acad. Sci., 81, 8014–8019. https://doi.org/10.1073/pnas.81.24.8014 DOI: https://doi.org/10.1073/pnas.81.24.8014
  24. da Silva Wanderley, C., de Faria, R.T., Rezende, R. (2014). Crescimento de girassol como flor em vaso em função de doses de paclobutrazol [Growth of potted sunflower in response to paclobutrazol]. Rev. Ceres, 61(1), 35–41 [in Portuguese]. https://doi.org/10.1590/S0034-737X2014000100005 DOI: https://doi.org/10.1590/S0034-737X2014000100005
  25. Sipioni, M.S., Júnior J.F.L., Dias, P.H.R., Steiner, F. (2016). Paclobutrazol and cattle manure use improves the quality of pepper seedlings. Sci. Agrar. Paran., 15(3), 332–337. https://doi.org/10.18188/1983-1471/sap.v15n3p332-337 DOI: https://doi.org/10.18188/1983-1471/sap.v15n3p332-337
  26. Sönmez, İ. (2017). Determination of the effects on growth and nutrient content of tomato seedlings of spent mushroom compost. Mediterr. Agric. Sci., 30(1), 59–63.
  27. Sunar, S., Bulut, H. (2019). Buğday (Triticum aestivum L.) tohumlarında büyüme düzenleyicisi 2,4-D isooctylester herbisitinin meydana getirdiği retrotranspozon hareketliliğinin moleküler yöntem İle değerlendirilmesi [Evaluation of retrotransposon mobility caused by growth regulator 2,4-d isooctylester herbicide in wheat (Triticum aestivum L.) seeds by molecular method]. Erzincan Univ. J. Sci. Technol., 12(2), 585–594 [in Turkish]. https://doi.org/10.18185/erzifbed.480629 DOI: https://doi.org/10.18185/erzifbed.480629
  28. Teto, A.A., Laubscher, C.P., Ndakidemi, P.A., Matimati, I. (2016). Paclobutrazol retards vegetative growth in hydroponically-cultured Leonotis leonurus (L.) R. Br. Lamiaceae for a multipurpose flowering potted plant. S. Afr. J. Bot., 106, 67–70. https://doi.org/10.1016/j.sajb.2016.05.012 DOI: https://doi.org/10.1016/j.sajb.2016.05.012
  29. Thakur, R., Sood, A., Nagar, P.K., Pandey, S., Sobti, R.C., Ahuja, P.S. (2006). Regulation of growth of lilium plantlets in liquid medium by application of paclobutrazol or ancymidol, for its amenability in a bioreactor system: growth parameters. Plant Cell Rep., 25(5), 382–391. https://doi.org/10.1007/s00299-005-0094-1 DOI: https://doi.org/10.1007/s00299-005-0094-1
  30. Tsegaw, T., Hammes, S., Robbertse, J. (2005). Paclobutrazol-induced leaf, stem, and root anatomical modifications in potato. Hort. Sci., 40(5), 1343–1346. https://doi.org/10.21273/hortsci.40.5.1343 DOI: https://doi.org/10.21273/HORTSCI.40.5.1343
  31. Uçan, U. (2019). Effect of various doses salicylic acid on the development of Penicillium expansum on postharvest tomato fruits. MSc Dissertation, Ordu University, Ordu.
  32. Xue, Y., Cheng, Z.-H., Xu, X.-Y., Nie, P.-J. (2008). The dwarfing effect and ornamental accession of foliage spraying of PP (333) and CCC on egg-fruit eggplant. Acta Agric. Bor. Sin., 5.
  33. Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J.L., Capy, P., Chalhoub, B., Flavell, A.J., Leroy, P., Michele, M., Olivier, P., Paux, E., Sanmiguel P., Achulman A.H. (2007). A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet., 8(12), 973–982. https://doi.org/10.1038/nrg2165 DOI: https://doi.org/10.1038/nrg2165
  34. Wessler, S.R. (2006). Eukaryotic transposable elements: teaching old genomes new tricks. In: The implicit genome, Caporale, L.H. (ed.). Oxford University Press, 138–165.
  35. Yigider, E., Taşpınar, M.S., Sigmaz, B., Aydin, M., Agar, G. (2016). Humic acids protective activity against manganese induced LTR (long terminal repeat) retrotransposon polymorphism and genomic instability effects in Zea mays. Plant Gene, 6, 13–17. https://doi.org/10.1016/j.plgene.2016.03.002 DOI: https://doi.org/10.1016/j.plgene.2016.03.002
  36. Yim, K.O., Kwon, Y.W., Bayer, D.E. (1997). Growth responses and allocation of assimilates of rice seedlings by paclobutrazol and gibberellin treatment. J. Plant Growth Reg., 16(1), 35–41. https://doi.org/10.1007/PL00006972 DOI: https://doi.org/10.1007/PL00006972
  37. Zandstra, J.W., Squire, R.C., Watt, G.J. (2007). Managing transplant size and advancing field maturity of fresh tomatoes and peppers. In: Ontario vegetable crop research. University of Guelph Ridgetown Campus, 1–16.
  38. Zawadzinska, A., Dobrowolska, A. (2004). Effects of paclobutrazol on growth and flowering of Pelargonium × hortorum Bailey heterositic cultivars. Folia Univ. Agric. Stetin. Agric. 93, 409–414.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 13 14 15 16 17 18 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.