Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 3 (2022)

Articles

THE EFFECT OF SPENT MUSHROOM SUBSTRATE ENRICHED WITH SELENIUM AND ZINC ON THE YIELD AND PHOTOSYNTHETIC PARAMETERS OF LETTUCE (Lactuca sativa L.)

DOI: https://doi.org/10.24326/asphc.2022.3.8
Submitted: September 3, 2021
Published: 2022-06-30

Abstract

The aim of the study was to investigate the influence of Agaricus bisporus spent mushroom substrate (A-SMS) enriched with selenium (Se) and zinc (Zn) on the yield and photosynthetic parameters of lettuce (Lactuca sativa L. var. capitata) of the ‘Skindel’ cultivar. The growing medium for the cultivation of lettuce consisted of A-SMS (10%) and commercial peat (90%). It was further enriched with Se and Zn concentrated at five levels, i.e. 0.1, 0.2, 0.4, 0.6, and 0.8 mmol·L–1 to obtain six growing medias. Se was added to the growing medium in the form of sodium selenite and sodium selenate at a 1:1 ratio, whereas Zn was added in the form of zinc nitrate hexahydrate. Lettuce was grown under controlled conditions in growth chambers. The experiment was conducted in a randomised complete block design in three replicates. The results indicated that the A-SMS added to the growing medium increased both the yield of lettuce and its biological value by increasing the content of Se and Zn. Consumable percent recommended daily allowance and safe hazard quotient for lettuce biofortified with Se and Zn were achieved. The experiment also showed that the addition of Se + Zn did not negatively affect photosynthesis and chlorophyll fluorescence parameters, which proved that these elements did not have toxic effect on lettuce in agronomic perspective.

References

  1. Ahlawat, O.P., Sagar, M.P., Raj, D., Chandrasekaran, I.R. (2007). Effect of spent mushroom substrate on yield and quality of capsicum. Indian J. Hort., 64(4), 430–434.
  2. Aktas, H., Daler, S., Ozen, O., Gencer, K., Bayindir, D., Erdal, I. (2013). The effect of some growing substrate media on yield and fruit quality of eggplant (Solanum melongena L.) grown and irrigated by drip irrigation system in greenhouse. Infrastrukt. Ekol. Teren. Wiej., 1(3), 5–11.
  3. de Almeida, H.J., Vergara Carmona V.M., Ferreira Inocêncio M., Furtini Neto A.E., Cecílio Filho A.B., Mauad, M. (2020). Soil type and zinc doses in agronomic biofortification of lettuce genotypes. Agronomy, 10(1), 124. https://doi.org/10.3390/agronomy10010124 DOI: https://doi.org/10.3390/agronomy10010124
  4. Alsiņa, I., Dubova, L., Smiltiņa, Z., Stroksa, L., Dūma, M. (2012). The effect of selenium on yield quality of lettuce. Acta Hort., 939, 269–276. DOI: https://doi.org/10.17660/ActaHortic.2012.939.35
  5. Andersson, M., de Benoist, B., Darnton-Hill, I., Delange, F. (2007). Iodine deficiency in Europe: a continuing public health problem. World Health Organization, Geneva.
  6. Atila, F. (2016). Effect of different substrate disinfection methods on the production of Pleurotus ostreatus. J. Agric. Stud., 4(4), 52. http://dx.doi.org/10.5296/jas.v4i4.10051 DOI: https://doi.org/10.5296/jas.v4i4.10051
  7. Beal, T., Massiot, E., Joanne, E., Arsenault, J.E., Matthew, R., Smith, M.R., Hijmans, R.J. (2017). Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PLoS ONE, 12, e0175554 DOI: https://doi.org/10.1371/journal.pone.0175554
  8. Björkman, O., Demmig, B. (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170, 489–504. https://doi.org/10.1007/BF00402983 DOI: https://doi.org/10.1007/BF00402983
  9. Bouis, H.E., Saltzman, A. (2017). Improving nutrition through biofortification. A review of evidence from Harvest Plus, 2003 through 2016. Global Food Sec., 12, 49–58. https://doi.org/10.1016/j.gfs.2017.01.009 DOI: https://doi.org/10.1016/j.gfs.2017.01.009
  10. Cebula J., Pelczar J., Loska K., Widziewicz K. (2013). The effect of Spent Mushroom Substrate field storage conditions on its leachate composition. Inż. Ochrona Środ., 16(1), 93–102.
  11. Chong, C. (2005). Experiences with waste and compost in nursery substrate. Hort Technol., 15, 739–747. https://doi.org/10.21273/HORTTECH.15.4.0739 DOI: https://doi.org/10.21273/HORTTECH.15.4.0739
  12. Collela, C.F., Costa, L.M.A.S., De Moraes, T.S.J., Zied, D.C., Rinker, D.L., Dias, E.S. (2019). Potential utilization of spent Agaricus bisporus mushroom substrate for seedling production and organic fertilizer in tomato cultivation. Ciȇnc. Agrotechnol., 43, e017119. DOI: https://doi.org/10.1590/1413-7054201943017119
  13. Das, D., Seal, P., Biswas, A.K. (2019). Influence of selenium on growth, antioxidants production and physiological parameters of rice (Oryza sativa L.) seedlings and its possible reversal by coapplication of sulphate. Am. J. Plant Sci., 10, 2236–2278. https://doi.org/10.4236/ajps.2019.1012158 DOI: https://doi.org/10.4236/ajps.2019.1012158
  14. Demir, H. (2017). The effects of spent mushroom compost on growth and nutrient contents of pepper seedlings. Mediterr. Agric. Sci., 30(2), 91–96.
  15. Ei, H.H., Zheng, T., Farooq, M.U., Zeng, R., Su, Y., Zhang, Y., Liang, Y., Tang, Z., Ye, X., Jia, X., Zhu, J. (2020). Impact of selenium, zinc and their interaction on key enzymes, grain yield, selenium, zinc concentrations, and seedling vigor of biofortified rice. Environ. Sci. Pollut. Res., 27, 16940–16949. https://doi.org/10.1007/s11356-020-08202-8 DOI: https://doi.org/10.1007/s11356-020-08202-8
  16. Esringu, A., Ekinci, M., Usta, S., Turan, M., Dursun, A., Ercisli, S., Yıldırım, E. (2015). Selenium supplementation affects the growth, yield and selenium accumulation in lettuce (Lactuca sativa L.). C. R. Acad. Bulg. Sci., 68.801–810.
  17. Eudoxie, G.D., Alexander, I.A. (2011). Spent mushroom substrate as a transplant media replacement for commercial peat in tomato seedling production. J. Agric. Sci., 3, 41–49. DOI: https://doi.org/10.5539/jas.v3n4p41
  18. European statistics handbook (2020). Available: https://www.fruitlogistica.com/FRUIT-LOGISTICA/Downloads-Alle-Sprachen/Auf-einen-Blick/European_Statistics_Handbook_2020.pdf [date of access: 20.08.2021].
  19. Fairweather-Tait, S.J., Bao, Y., Broadley, M.R., Collings, R., Ford, D., Hesketh, J.E., Hurst, R. (2011). Selenium in human health and disease. Antioxid. Redox Signal., 14, 1337–1383. https://doi.org/10.1089/ars.2010.3275 DOI: https://doi.org/10.1089/ars.2010.3275
  20. Fargašová, A., Pastierová, J., Svetková, K. (2006). Effect of Se-metal pair combinations (Cd, Zn, Cu, Pb) on photosynthetic pigments production and metal accumulation in Sinapis alba L. seedlings. Plant Soil Environ., 52(1), 8–15. https://doi.org/10.17221/3340-PSE DOI: https://doi.org/10.17221/3340-PSE
  21. Feng, R.W., Wei, C.Y., Tu, S.X. (2013). The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot., 87, 58–68. DOI: https://doi.org/10.1016/j.envexpbot.2012.09.002
  22. Feng, T., Chen, S.S., Gao, D.Q., Liu, G.Q., Bai, H.X., Li A., Peng, L.X., Ren, Z.Y. (2015). Selenium improves photosynthesis and protects photosystem II in pear (Pyrus bretschneideri), grape (Vitis vinifera), and peach (Prunus persica). Photosynthetica, 53, 609–612. https://doi.org/10.1007/s11099-015-0118-1 DOI: https://doi.org/10.1007/s11099-015-0118-1
  23. Finley, J.W., Sigrid-Keck, A., Robbin, R.J., Hintze, K.J. (2005). Selenium enrichment of broccoli. Interactions between selenium and secondary plant compounds. J. Nutr., 5, 1236–1238. https://doi.org/10.1093/jn/135.5.1236 DOI: https://doi.org/10.1093/jn/135.5.1236
  24. FAO – Food and Agriculture Organization of the United Nations (2018). FAO Statistics Division. Available: https://www.fao.org/faostat/en/#data/QCL [date of access: 25.08.2021].
  25. FAO – Food and Agriculture Organization of the United Nations (2019). FAO Statistics Division. Available: http://www.fao.org/faostat/en/#data/QC [date of access: 25.08.2021].
  26. Fordyce, F.M. (2013). Selenium deficiency and toxicity in the environment. In: Essentials of medical geology, Selinus, O. (ed.), rev. ed. 375–416. https://doi.org/10.1007/978-94-007-4375-5_16 DOI: https://doi.org/10.1007/978-94-007-4375-5_16
  27. Gao, W.Q., Liang, J., Pizzul, L., Feng, X-M., Zhang, K., del Pilar Castillo, M. (2015). Evaluation of spent mushroom substrate as substitute of peat in Chinese biobeds. Int Biodeterior. Biodegrad., 98, 107–112. https://doi.org/10.1016/j.ibiod.2014.12.008 DOI: https://doi.org/10.1016/j.ibiod.2014.12.008
  28. Garousi, F., Kovács, B., Domokos-Szabolcsy, E., Veres, S. (2017). Biological changes of green pea (Pisum sativum L.) by selenium enrichment. Acta Biol. Hung., 68, 60–72. https://doi.org/10.1556/018.68.2017.1.6 DOI: https://doi.org/10.1556/018.68.2017.1.6
  29. Garousi, F., Kovacs, B., Veres, S. (2016). Investigation of photosynthesis status of sun-flower plants up-taking different forms of selenium. Adv. Plants Agric. Res., 3, 10–14. https://doi.org/10.15406/apar.2016.03.00083 DOI: https://doi.org/10.15406/apar.2016.03.00083
  30. Genty, B., Briantais, J.M., Baker, N.R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta., 990, 87–92. https://doi.org/10.1016/S0304-4165(89)80016-9 DOI: https://doi.org/10.1016/S0304-4165(89)80016-9
  31. Germ, M., Pongrac, P., Regvar, M., Vogel-Mikuš, K., Stibilj, V., Jaćimović, R., Kreft, I. (2013). Impact of double Zn and Se biofortification of wheat plants on the element concentrations in the grain. Plant Soil Environ., 59, 316–321. https://doi.org/10.17221/6/2013-PSE DOI: https://doi.org/10.17221/6/2013-PSE
  32. Ghasemi, Y., Ghasemi, K., Pirdashti, H., Asgharzadeh, R. (2016). Effect of selenium enrichment on the growth, photosynthesis and mineral nutrition of broccoli. Not. Sci. Biol., 8, 199–203. https://doi.org/10.15835/nsb.8.2.9804 DOI: https://doi.org/10.15835/nsb829804
  33. Gupta, M., Gupta, S. (2017). An overview of selenium uptake, metabolism, and toxicity in plants. Front. Plant Sci., 7. 2074. DOI: https://doi.org/10.3389/fpls.2016.02074
  34. Haghigh, M., Sheibanirad, A., Pessarakli, M. (2016). Effects of Selenium as a beneficial element on growth and photosynthetic attributes of greenhouse cucumber. J. Plant Nutri., 1493–1498. https://doi.org/10.1080/01904167.2015.1109116 DOI: https://doi.org/10.1080/01904167.2015.1109116
  35. Hawrylak-Nowak, B. (2013). Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic Conditions. Plant Growth Regul., 70, 149–157. https://doi.org/10.1007/s10725-013-9788-5 DOI: https://doi.org/10.1007/s10725-013-9788-5
  36. Hawrylak-Nowak, B., Dresler, S., Rubinowska, K., Matraszek-Gawron, R., Woch, W., Hasanuzzaman, M. (2018). Selenium biofortification enhances the growth and alters the physiological response of lamb’s lettuce grown under high temperature stress. Plant Physiol. Biochem., 127, 446–456. https://doi.org/10.1016/j.plaphy.2018.04.018 DOI: https://doi.org/10.1016/j.plaphy.2018.04.018
  37. Hawrylak-Nowak, B., Matraszek, R., Pogorzelec, M. (2015). The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiol. Plant, 37–41. https://doi.org/10.1007/s11738-015-1788-9 DOI: https://doi.org/10.1007/s11738-015-1788-9
  38. Idowu, O.O., Kadiri, M. (2013). Growth and yield response of okra (Abelmoschus esculentus Moench) to spent mushroom compost from the cultivation of Pleurotus ostreatus an edible mushroom. Academia J. Agric. Res., 1(3), 39–44.
  39. Institute of Medicine (2000). Dietary reference intakes: vitamin C, vitamin E, selenium, and carotenoids. National Academy Press, Washington, DC. https://doi.org/10.17226/9810 DOI: https://doi.org/10.17226/9810
  40. Institute of Medicine (2001). Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington, DC. https://doi.org/10.17226/10026 DOI: https://doi.org/10.17226/10026
  41. Jiang, C., Zu, C., Shen, J., Shao, F., Li, T. (2015). Effects of selenium on the growth and photosynthetic characteristics of flue-cured tobacco (Nicotiana tabacum L.). Acta Soc. Bot. Pol., 84, 71–77. https://doi.org/10.5586/asbp.2015.006 DOI: https://doi.org/10.5586/asbp.2015.006
  42. Kim, M.J., Moon, Y., Tou, J.C., Mou, B., Waterland, N.L. (2016). Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal., 49, 19–34. https://doi.org/10.1016/j.jfca.2016.03.004 DOI: https://doi.org/10.1016/j.jfca.2016.03.004
  43. Li, H.F., McGrath, S.P., Zhao, F.J. (2008). Selenium uptake, translocation and speciation in wheat supplied with selenate and selenite. New Phytol., 178, 92–102. https://doi.org/10.1111/j.1469-8137.2007.02343.x DOI: https://doi.org/10.1111/j.1469-8137.2007.02343.x
  44. Liu, R., Zhang, H., Lal, R. (2016). Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination. Nanotoxicants or nanonutrients?. Water Air Soil Poll., 227. https://doi.org/10.1007/s11270-015-2738-2 DOI: https://doi.org/10.1007/s11270-015-2738-2
  45. Łukaszewicz, S., Politycka, B., Smoleń, S. (2018). Effects of selenium on the content of essential micronutrients and their translocation in garden pea. J. Elem., 23, 1307–1317. https://doi.org/10.5601/jelem.2017.22.4.1577 DOI: https://doi.org/10.5601/jelem.2017.22.4.1577
  46. Magalhães, A.C., Moreira, B.R. De A., Zied, D.C. (2018). Axenic cultivation of Pleurotus ostreatus var. Florida in supplemented sugarcane bagasse briquettes. Engenharia Agrícola, 38(6), 835–843. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v38n6p835-843/2018 DOI: https://doi.org/10.1590/1809-4430-eng.agric.v38n6p835-843/2018
  47. Marques, E.L.S., Martos, E.T., Souza, R.J., Silva, R., Zied, D.C., Dias, E. (2014). Spent mushroom compost as a ubstrate for the production of lettuce seedlings. J. Agric Sci., 6, 138–143. DOI: https://doi.org/10.5539/jas.v6n7p138
  48. Materska, M., Olszówka, K., Chilczuk, B., Stochmal, A., Pecio, Ł., Pacholczyk Sienicka, B., Piacente, S., Pizza, C., Masullo, M. (2019). Polyphenolic profile in lettuce (Lactuca sativa L.) after CaCl2 treatment and cold storage. Eur. Food Res. Technol, 245, 33–744. https://doi.org/10.1007/s00217-018-3195-0 DOI: https://doi.org/10.1007/s00217-018-3195-0
  49. Medina, E., Paredes, C., Pérez-Murcia, M.D., Bustamante, M.A., Moral, R. (2009). Spent mushroom substrates as component of growing media for germination and growth of horticultural plant. Bioresour. Technol., 100, 4227–4232. https://doi.org/10.1016/j.biortech.2009.03.055 DOI: https://doi.org/10.1016/j.biortech.2009.03.055
  50. do Nascimento da Silva E., Cadore, S. (2019). Bioavailability assessment of copper, iron, manganese, molybdenum, selenium, and zinc from selenium-enriched lettuce. J. Food Sci., 84, 2840–2846. https://doi.org/10.1111/1750-3841.14785 DOI: https://doi.org/10.1111/1750-3841.14785
  51. Nawaz, F., Ahmad, R., Ashraf, M.Y., Waraich, E.A., Khan, S.Z. (2015). Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicol. Environ. Saf., 113, 191–200. https://doi.org/10.1016/j.ecoenv.2014.12.003 DOI: https://doi.org/10.1016/j.ecoenv.2014.12.003
  52. Pannico, A., El-Nakhel, C., Kyriacou, M.C., Giordano, M., Stazi, S.R., De Pascale, S., Rouphael, Y. (2019). Combating micronutrient deficiency and enhancing food functional quality through selenium fortification of select lettuce genotypes grown in a closed soilless system. Front. Plant Sci., 10, 1495. https://doi.org/10.3389/fpls.2019.01495 DOI: https://doi.org/10.3389/fpls.2019.01495
  53. Papp, L.A., LU, J., Holmgren, A., Khanna, K.K. (2007). From selenium to selenoproteins.synthesis, identity, and their role in human health. Antioxid. Redox Signaling, 9, 776–796. https://doi.org/10.1089/ars.2007.1528 DOI: https://doi.org/10.1089/ars.2007.1528
  54. Polat, E., Uzun, H.I., Topçuoğlu, B., Önal K., Onus A.N., Karaca M. (2009). Effect of spent mushroom compost on quality and productivity of cucumber (Cucumis sativus L.) grown in greenhouses. Afr. J. Biotechnol., 8(2), 176–180.
  55. Prasad, R., Lisiecka, J., Antala, M., Rastogi, A. (2021). Influence of different spent mushroom substrates on yield, morphological and photosynthetic parameters of strawberry (Fragaria × ananassa Duch.). Agronomy, 11, 2086. https://doi.org/10.3390/agronomy11102086 DOI: https://doi.org/10.3390/agronomy11102086
  56. Rahman, M.S., Rahman, M.H., Chowdhary, M.F.N., Sultana, M.S., Ahmed, K.U. (2016). Effect of spent mushroom substrate and cowdung on growth, yield and proximate composition of brinjal. Int. J. Sci. Res., 6(10), 468–475.
  57. Ramos, S.J., Faquin, V., Guilherme, L.R.G., Castro, E M., Ávila, F.W., Carvalho, G.S., Bastos, C.E.A., Oliveira, C. (2010). Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil Environ., 56, 584–588. https://doi.org/10.17221/113/2010-PSE DOI: https://doi.org/10.17221/113/2010-PSE
  58. Raviv, M. (2011). The future of composts as ingredients of growing media. Proc. IS on Growing Media and Composting Acta Hort., 891, 19–32. https://doi.org/10.17660/ActaHortic.2011.891.1 DOI: https://doi.org/10.17660/ActaHortic.2011.891.1
  59. Rayman, M.P. (2012). Selenium and human health. Lancet, 379, 1256–1268. https://doi.org/10.1016/S0140-736(11)61452-9 DOI: https://doi.org/10.1016/S0140-6736(11)61452-9
  60. Ribas, L.C.C., de Mendonca, M.M., Camelini, C.M., Soares, C.H.L. (2009). Use of spent mushroom substrates from Agaricus subufescens (syn. A. blazei, A. brasiliensis) and Lentinula edodes productions in the enrichment of a soil-based potting media for lettuce (Lactuca sativa) cultivation.Growth promotion and soil bioremediation. Bioresour. Technol., 100, 4750–4757. https://doi.org/10.1016/j.biortech.2008.10.059 DOI: https://doi.org/10.1016/j.biortech.2008.10.059
  61. Ríos, J.J., Blasco, B., Cervilla, L.M., Rubio-Wilhelmi, M.M., Rosales, M.A., Sánchez-Rodríguez, E., Romero, L., Ruiz, J.M. (2010). Nitrogen-use efficiency in relation to different forms and application rates of Se in lettuce plants. J. Plant Growth Reg., 29, 164–170. https://doi.org/10.1007/s00344-009-9130-7 DOI: https://doi.org/10.1007/s00344-009-9130-7
  62. Ríos, J.J., Rosales, M.A., Blasco, B., Cervilla, L.M., Romero, L., Ruiz, J.M. (2008a). Bio fortification of Se and induction of the antioxidant capacity in lettuce plants. Sci. Hortic., 116, 248–255. https://doi.org/10.1016/j.scienta.2008.01.008 DOI: https://doi.org/10.1016/j.scienta.2008.01.008
  63. Ríos, J.J., Blasco, B., Cervilla, L.M., Rubio-Wilhelmi, M.M., Ruiz, J.M., Romero, L. (2008b). Regulation of sulphur assimilation in lettuce plants in the presence of selenium. Plant Growth Regul., 56, 43–51. https://doi.org/10.1007/s10725-008-9282-7 DOI: https://doi.org/10.1007/s10725-008-9282-7
  64. Roháček, K. (2002). Chlorophyll fluorescence parameters.the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica, 40, 13–29. DOI: https://doi.org/10.1023/A:1020125719386
  65. Roosta, H.R., Estaji, A., Niknam, F. (2018). Effect of iron, zinc and manganese shortage induced change on photosynthetic pigments, some osmoregulators and chlorophyll fluorescence parameters in lettuce. Photosynthetica, 56, 606–615. https://doi.org/10.1007/s11099-017-0696-1 DOI: https://doi.org/10.1007/s11099-017-0696-1
  66. Roy, S., Barman, S., Chakraborty, U., Chakraborty, B. (2015). Evaluation of Spent Mushroom Substrate as biofertilizer for growth improvement of Capsicum annuum L. J. Appl. Biol. Biotechnol., 3(3), 22–27. https://doi.org/10.7324/JABB.2015.3305 DOI: https://doi.org/10.7324/JABB.2015.3305
  67. Rzymski, P., Mleczek, M., Niedzielski, P., Siwulski, M., Gąsecka, M. (2017). Cultivation of Agaricus bisporus enriched with selenium, zinc and copper. Sci. Food Agric, 97, 923–928. https://doi.org/10.1002/jsfa.7816 DOI: https://doi.org/10.1002/jsfa.7816
  68. Sahin, O. (2021). Combined biofortification of soilless grown lettuce with iodine, selenium and zinc and its effect on essential and non-essential elemental composition, J. Plant Nutrition., 44, 673–678. https://doi.org/10.1080/01904167.2020.1849300 DOI: https://doi.org/10.1080/01904167.2020.1849300
  69. Schiavon, M., Nardi, S., Vecchia, F., Ertani, A. (2020). Selenium biofortification in the 21st century.status and challenges for healthy human nutrition. Plant Soil, 453, 245–270. https://doi.org/10.1007/s11104-020-04635-9 DOI: https://doi.org/10.1007/s11104-020-04635-9
  70. Schreiber, U., Schliwa, U., Bilger, W. (1986). Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res., 10, 51–56. https://doi.org/10.1007/BF00024185 DOI: https://doi.org/10.1007/BF00024185
  71. Semple, K.T., Reid, B.J., Fermor, T.R. (2001). Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ. Pollut., 112, 269–283. https://doi.org/10.1016/S0269-7491(00)00099-3 DOI: https://doi.org/10.1016/S0269-7491(00)00099-3
  72. Sendi, H., Mohamed, M.T.M., Anwar, M.P., Saud, H.M. (2013). Spent mushroom waste as a media replacement for peat moss in Kai-Lan (Brassica oleracea var. Alboglabra) Production. Sci. World J., 1–8. https://doi.org/10.1155/2013/258562 DOI: https://doi.org/10.1155/2013/258562
  73. Shankar, A.H., Prasad, A.S. (1998). Zinc and immune function.the biological basis of altered resistance to infection. Am. J. Clin. Nutr., 68, 447–463. https://doi.org/10.1093/ajcn/68.2.447S DOI: https://doi.org/10.1093/ajcn/68.2.447S
  74. Sidhu, G.P.S. (2016). Physiological, biochemical and molecular mechanisms of zinc uptake, toxicity and tolerance in plants. J. Global Biosci., 5(9), 4603–4633.
  75. Silva, M.A.O., de Andrade, S.A.L., Mazzafera, P., Arruda, M.A.Z. (2011). Evaluation of sunflower metabolism from zinc and selenium addition to the culture.A comparative metallomic study. Int. J. Mass Spectrom., 307, 55–60. https://doi.org/10.1016/j.ijms.2010.10.023 DOI: https://doi.org/10.1016/j.ijms.2010.10.023
  76. Smoleń, S., Kowalska, I., Czernicka, M., Halka, M., Kęska, K., Sady, W. (2016). Iodine and selenium biofortification with additional application of salicylic acid affects yield, selected molecular parameters and chemical composition of lettuce plants (Lactuca sativa L. var. capitata). Front. Plant Sci., 7, 1–16. https://doi.org/10.3389/fpls.2019.00143 DOI: https://doi.org/10.3389/fpls.2016.01553
  77. Smoleń, S., Kowalska, I., Kováčik, P., Halka, M., Sady, W. (2019). Bio fortification of six varieties of lettuce (Lactuca sativa L.) with iodine and selenium in combination with the application of salicylic acid. Front. Plant Sci., 10. https://doi.org/10.3389/fpls.2016.01553 DOI: https://doi.org/10.3389/fpls.2019.00143
  78. Soliva-Fortuny, R.C., Martin-Belloso, O. (2003). New advances in extending the shelf-life of fresh-cut fruits:
  79. a review. Trends Food Sci. Tech., 14, 341–353. http://dx.doi.org/10.1016/s0924-2244(03)00054-2 DOI: https://doi.org/10.1016/S0924-2244(03)00054-2
  80. Suess, A., Curtis, J.P. (2006). Report. Value-added strategies for Spent Mushroom Substrate in BC. British Columbia Ministry of Agricultural and Lands, 1–101.
  81. Sularz, O., Smoleń, S., Koronowicz, A., Kowalska, I., Leszczyńska, T. (2020). Chemical composition of lettuce (Lactuca sativa L.) biofortified with iodine by KIO3, 5-Iodo-, and 3.5-diiodosalicylic acid in a hydroponic cultivation. Agronomy, 10,1022. https://doi.org/10.3390/agronomy10071022 DOI: https://doi.org/10.3390/agronomy10071022
  82. Unal, M. (2015). The utilization of spent mushroom compost applied at different rates in tomato (Lycopersicon esculentum Mill.) seedling production. Emirates J. Food Agric., 27, 692–697. https://doi.org/10.9755/ejfa.2015-05-206 DOI: https://doi.org/10.9755/ejfa.2015-05-206
  83. Vassilev, A., Nikolova, A., Koleva, L., Lidon, F. (2011). Effects of excess Zn on growth and photosynthetic performance of young bean plants. J. Phytol., 3, 58–62.
  84. Wang, Y.D., Wang, X., Wong, Y.S. (2012). Proteomics analysis reveals multiple regulatory mechanisms in response to selenium in rice. J. Proteomics, 75, 1849–1866. https://doi.org/10.1016/j.jprot.2011.12.030 DOI: https://doi.org/10.1016/j.jprot.2011.12.030
  85. White, P.J., Broadley, M.R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol., 182, 49–84. https://doi.org/10.1111/j.1469-8137.2008.02738.x DOI: https://doi.org/10.1111/j.1469-8137.2008.02738.x
  86. Williams, B.C., McMullan, J.T., McCahey, S. (2001). An initial assessment of spent mushroom compost as a potential energy feedstock. Bioresour. Technol., 79, 227–230. https://doi.org/10.1016/S0960-8524(01)00073-6 DOI: https://doi.org/10.1016/S0960-8524(01)00073-6
  87. Xue, T., Hartikainen, H., Piironen, V. (2001). Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil, 237, 55–61. https://doi.org/10.1023/A:1013369804867 DOI: https://doi.org/10.1023/A:1013369804867
  88. Zhang, M., Tang, S., Huang X., Zhang, F., Pang, Y., Huang, Q., Yi, Q. (2014). Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). Environ. Exp. Bot., 107, 39–45. https://doi.org/10.1016/j.envexpbot.2014.05.005 DOI: https://doi.org/10.1016/j.envexpbot.2014.05.005
  89. Zhang, R-H., Duan, Z-Q., Li, Z-G. (2012). Use of spent mushroom substrate as growing media for tomato and cucumber seedlings. Pedosphere, 22, 333–342. https://doi.org/10.1016/S1002-0160(12)60020-4 DOI: https://doi.org/10.1016/S1002-0160(12)60020-4
  90. Zhao, F.J., McGrath, S.P. (2009). Biofortification and phytoremediation. Curr. Opin. Plant Biol., 12, 373–380. https://doi.org/10.1016/j.pbi.2009.04.005 DOI: https://doi.org/10.1016/j.pbi.2009.04.005

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 19 20 21 22 23 24 25 26 27 28 > >> 

You may also start an advanced similarity search for this article.