Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 19 Nr 1 (2020)

Artykuły

CHINESE CABBAGE BrMYB34.2 TRANSCRIPTION FACTOR REGULATES INDOLIC GLUCOSINOLATES BIOSYNTHESIS IN Arabidopsis

DOI: https://doi.org/10.24326/asphc.2020.1.8
Przesłane: 6 lutego 2020
Opublikowane: 2020-02-21

Abstrakt

Glucosinolates (GS) are a group of sulfur- and nitrogen-rich plant secondary metabolites that originate from amino acids and exist mainly in plants in the order Brassicales, such as Arabidopsis thaliana (Arabidopsis) and Chinese cabbage (Brassica rapa ssp. pekinensis). To date, several regulatory components responsible for GS biosynthesis have been identified in Arabidopsis. However, the functions of GS biosynthesis regulators in Chinese cabbage have not been clarified. In our current study, a putative ATR1/MYB34 orthologous gene, BrMYB34.2, was isolated from Chinese cabbage leaves. To investigate the function of this gene, we engineered Arabidopsis plants that overexpress BrMYB34.2 ectopically and phenotypic analysis was performed. Moreover, we assayed the accumulation levels of indolic GS (IGS) and aliphatic glucosinolates in transgenic plants and test the expression of key genes of IGS biosynthesis and tryptophan synthesis by Real-time quantitative PCR. And further analysed the resistance of transgenic plants in 5MT stress treatment. The results indicate that ectopic expression of the BrMYB34.2 gene in Arabidopsis was able to up-regulate the accumulation level of IGS due to the increased expression of IGS and Trp biosynthetic genes. Moreover, overexpression of BrMYB34.2 conferred Arabidopsis 5MT resistance. These results suggest that the BrMYB34.2 gene may function as one of the regulators of IGS and Trp biosynthesis in Chinese cabbage.

Bibliografia

  1. Baskar, V., Park, S.W. (2015). Molecular characterization of BrMYB28 and BrMYB29 paralogous transcription factors involved in the regulation of aliphatic glucosinolate profiles in Brassica rapa ssp. Pekinensis. C.R., Biol., 338, 434–442. DOI: 10.1016/j.crvi.2015.04.001
  2. Bechtold, N., Ellis, J., Pelletier, G. (1993). In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Séances Acad. Sci., Sér. 3, Sci. Vie/ Life Sci., 316, 1194–1199.
  3. Bender, J., Fink, G.R. (1998). A Myb homologue, ATR1, activates tryptophan gene expression in Arabidopsis. Proc. Nati. Acad. Sci. U. S. Am., 95, 5655–5660. DOI: 10.1073/pnas.95.10.5655
  4. Celenza, J.L., Quiel, J.A., Smolen, G.A., Merrikh, H., Silvestro, A.R., Normanly, J., Bender, J. (2005). The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol., 137, 253–262. DOI: 10.1104/pp.104.054395
  5. Gigolashvili, T., Berger, B., Flügge, U.I. (2009). Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in Arabidopsis thaliana. Phytochem. Rev., 8, 3–13. DOI: 10.1007/s11101-008-9112-6
  6. Gigolashvili, T., Berger, B., Mock, H.P., Müller, C., Weisshaar, B., Flügge, U.I. (2007). The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J., 50, 886–901. DOI: 10.1111/j.1365-313X.2007.03099.x
  7. Gigolashvili, T., Engqvist, M., Yatusevich, R., Müller, C., Flügge, U.I. (2008). HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol., 177, 627–642. DOI: 10.1111/j.1469-8137.2007.02295.x
  8. Gigolashvili, T., Yatusevich, R., Berger, B., Müller, C., Flügge, U.I. (2007). The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J., 51, 247–261. DOI: 10.1111/j.1365-313X.2007.03133.x
  9. Grubb, C.D., Abel, S. (2006). Glucosinolate metabolism and its control. Trends Plant Sci., 11, 89–100. DOI: 10.1016/j.tplants.2005.12.006
  10. Hemm, M.R., Ruegger, M.O., Chapple, C. (2003). The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell, 15, 179–194. DOI: 10.1105/tpc.006544
  11. Justen, V.L., Fritz, V.A. (2013). Temperature-induced glucosinolate accumulation is associated with expression of BrMYB transcription factors. Hortscience, 48(1), 47–52. DOI: 10.21273/HORTSCI.48.1.47
  12. Levy, M., Wang, Q.M., Kaspi, R., Parrella, M.P., Abel, S. (2005). Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant J., 43(1), 79–96. DOI: 10.1111/j.1365-313X.2005.02435.x
  13. Martinez-Ballesta, M.C., Moreno, D.A., Carvajal, M. (2013). The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int. J. Mol. Sci., 14(6), 11607–11625. DOI: 10.3390/ijms140611607
  14. Maruyama-Nakashita, A., Nakamura, Y., Saito, K., Takahashi, H. (2007). Identification of a novel cis-acting element in SULTR1;2 promoter conferring sulfur deficiency response in Arabidopsis roots. Plant J., 42(3), 305–314. DOI: 10.1111/j.1365-313X.2005.02363.x
  15. Mun, J.H. et al. (2010). Sequence and structure of Brassica rapa chromosome A3. Genome Biol., 11, R94. DOI: 10.1186/gb-2010-11-9-r94
  16. Niyogi, K.K. (1993). Molecular and genetic analysis of anthranilate synthase in Arabidopsis thaliana. PhD Dissertation. Massachusetts Institute of Technology, Cambridge.
  17. Padilla, G., Cartea, M.E., Velasco, P. (2007). Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry, 6, 536–545. DOI: 10.1016/j.phytochem.2006.11.017
  18. Pruitt, K.D., Last, R.L. (1993). Expression patterns of duplicate tryptophan synthase β genes in Arabidopsis thaliana. Plant Physiol., 102, 1019–1026. DOI: 10.1104/pp.102.3.1019
  19. Schonhof, I., Krumbein, A., Brückner, B. (2004). Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Mol. Nutr. Food Res., 48(1), 25–33. DOI: 10.1002/food.200300329
  20. Seo, M.S., Jin, M., Chun, J.H., Kim, S.J., Park, B.S., Shon, S.H., Kim, J.S. (2016). Functional analysis of three BrMYB28 transcription factors controlling the biosynthesis of glucosinolates in Brassica rapa. Plant Mol. Biol., 90, 503–516. DOI: 10.1007/s11103-016-0437-z
  21. Seo, M.S., Jin, M., Sohn, S.H., Kim, J.S. (2017). Expression profiles of BrMYB transcription factors related to glucosinolate biosynthesis and stress response in eight subspecies of Brassica rapa. FEBS Open Bio, 7(11), 1646–1659. DOI: 10.1002/2211-5463.12231
  22. Skirycz, A., Reichelt, M., Burow, M., Birkemeyer, C., Rolcik, J., Kopka, J., Zanor, M.I., Gershenzon, J., Strnad, M., Szopa, J., Mueller-Roeber, B., Witt, I. (2006). DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant J., 47, 10–24. DOI: 10.1111/j.1365-313X.2006.02767.x
  23. Smolen, G., Bender, J. (2002). Arabidopsis cytochrome P450 cyp83B1 mutations activate the tryptophan biosynthetic pathway. Genetics, 160, 323–332.
  24. Sønderby, I.E., Geuflores, F., Halkier, B.A. (2010). Biosynthesis of glucosinolates – gene discovery and beyond. Trends Plant Sci., 15, 283–290. DOI: 10.1016/j.tplants.2010.02.005
  25. Textor, S., Kraker, J.W., Hause, B., Gershenzon, J., Tokuhisa, J.G. (2007). MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. Plant Physiol., 144, 60–71. DOI: 10.1104/pp.106.091579
  26. Traka, M., Mithen, R. (2009). Glucosinolates, isothiocyanates and human health. Phytochem. Rev., 8, 269–282. DOI: 10.1007/s11101-008-9103-7
  27. Wang, X. et al. (2011). The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet., 43, 1035–1157. DOI: 10.1038/ng.919
  28. Wang, Z., Tang, J., Hu, R., Wu, P., Hou, X.L., Song X.M., Xiong, A.S. (2015). Genome-wide analysis of the R2R3-MYB transcription factor genes in Chinese cabbage (Brassica rapa ssp. pekinensis) reveals their stress and hormone responsive patterns. BMC Genomics, 16, 17. DOI: 10.1186/s12864-015-1216-y
  29. Yan, X., Chen, S. (2007). Regulation of plant glucosinolate metabolism. Planta, 226, 1343–1352. DOI: 10.1007/s00425-007-0627-7
  30. Zang, Y.X., Kim, H.U., Kim, J.A., Lim, M.H., Jin, M., Lee, S.C., Kwon, S.J., Lee, S.I., Hong, J.K., Park, T.H., Mun, J.H., Seol, Y.J., Hong, S.B., Park, B.S. (2009). Genome-wide identification of glucosinolate synthesis genes in Brassica rapa. FEBS J., 276, 3559–3574. DOI: 10.1111/j.1742-4658.2009.07076.x

Downloads

Download data is not yet available.

Podobne artykuły

1 2 3 4 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.