Chamomile is one of the well-known herbs in the world, with numerous medicinal, cosmetic and health benefits. In this study, a factorial experiment was conducted in a randomized complete block design technique to evaluate the three different dosses of nitrogen (N1 = 0, N2 = 50 and N3 = 100 kg·ha–1) from urea 46%, and three different vermicompost dosses (V1 = 0, V2 = 4 and V3 = 8 t.ha–1) and three different zeolite superabsorbent levels (S1 = 0, S2 = 50 and S3 = 100 kg·ha–1) on flower yield and essential oil of Chamomile in Kazeroon, Fars province in 2017. The results showed that increasing the amount of nitrogen and vermicompost increased the plant height, flower diameter, number of flowers, flower yield, essential oil content, biological yield and essential elements content of the Chamomile. In the interaction of N × V, the highest and lowest dry flower yields were observed in N3V3 (456 kg·ha–1) and N1V1 (316.9 kg·ha–1) treatments, respectively. The interaction showed that the highest and the lowest of essential oil content were observed in N3V3 (2.82 kg·ha–1) and N1V1 (1.56 kg·ha–1), respectively. The highest content of chamazulene compound were obtained in N2V3S3 treatments with 6.40% and the highest content of α-bisabolol oxide A related to N2V3 treatments with 53.50%. Based on the interaction results of N × V × S, the highest biological yield was observed in N3V2S3 with 2012 kg·ha–1. The reason for the results can be due to the high moisture storage capacity of the superabsorbent and vermicompost, which can increase the availability of water consumption. In general, it seems that with increasing nitrogen and vermicompost ratios of soil, not only the nutritional availability of the plant (especially nitrogen, phosphorus and potassium) increased, but also the physical structure and vital processes of the soil by creating a suitable substrate for root growth- increased the production of chamomile flower yields.
<< < 7 8 9 10 11 12 13 14 15 16 > >>
Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.