Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 15 Nr 1 (2016)

Artykuły

THE EFFECT OF PENTAKEEP®-V APPLICATION ON FLOWER TRAITS AND NECTAR PRODUCTION IN Hosta TRATT. ‘KROSSA REGAL’

Przesłane: 25 października 2020
Opublikowane: 2016-02-29

Abstrakt

In modern horticulture the use of biostimulators for obtaining the maximum yields and qualities of the crops is favoured. Pentakeep®-V, the fertilizer containing
5-aminolevulinic acid (ALA) is currently recommended. The ALA is recognized as biostimulator of different physiological processes. It increases the photosynthetic efficiency, impact on the nitrogen metabolism – increases activity of nitrate reductase, decreases the content of nitrates. The flowering, nectar production and sugar content by flower position and after foliar application of Pentakeep®-V in Hosta Tratt. ‘Krossa Regal’ were examined in 2012–2013. The plants were sprayed with water solutions of Pentakeep®-V in concentrations: – 0 (control – distilled water), 0.02, 0.04, and 0.06%. Nectar was extracted from 24-hs flowers, using pipette method. Nectar amount and concentration was strongly influenced by floral position in the raceme, and fertilizer application. The total amount of nectar produced per flower declined along the inflorescence, starting from the bottom positioned. Pentakeep®-V fertilizer, depending on concentrations had a variety of effects on
flower traits and nectar production. The application of 0.06% of Pentakeep®-V increased the number of flowers per inflorescence, however only in one year of the study. Pentakeep ®-V in 0.02 and 0.04% concentrations increased the flower size, with respect to the perianth width as well as improved nectar production. The 0.06% of Pentakeep®-V application suppressed both the flower size and nectar production. These results might be explained by the stimulation of chlorophyll synthesis and CO2 absorption in lower dosages of ALA and reduced photosynthetic efficiency with excess dosages of ALA.

Bibliografia

Anonymous. (2013). Biostimulants market by active ingredients, applications, crop types and geography–Global Trends &Forecasts to 2018. Marketsandmarkets,
http://www.marketsandmarkets.com/Market-Reports/biostimulantmarket1081.html?gclid=CJfhh9TvorgCFcU5QgodkTMApw
Akram, N.A., Ashraf, M. (2013). Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. J. Plant Growth Reg., 32(3), 663–679.
Baude, M., Leloup, J., Suchail, S., Allard, B., Benest, D., Mériguet, J., Nunan, N., Dajoz, I., Raynaud, X. (2011). Litter inputs and plant interactions affect nectar sugar content. J. Ecol., 99, 828–837.
Biesmeijer, J.C., Roberts, S.P.M., Reemer, M., Ohlemuller, R., Edwards, M., Peeters, T., Schaffers, A.P., Potts, S.G., Kleukers, R., Thomas, C.D., Settele, J., Kunin, W.E. (2006). Parallel declines in pollinators and insect-pollinated plants in Britain and The Netherlands. Science, 313, 351–354.
Burkle, L.A., Irwin, R.E. (2009a). The effects of nutrient addition on floral characters and pollination in two subalpine plants, Ipomopsis aggregata and Linum lewisii. Plant Ecol., 203(1), 83–98.
Burkle, L.A., Irwin, R.E. (2009b). The importance of interannual variation and bottom-up nitrogen enrichment for plant-pollinator networks. Oikos, 118, 1816–1829.
Burkle, L.A., Irwin, R.E. (2010). Beyond biomass: measuring the effects of community-level nitrogen enrichment on floral traits, pollinator visitation and plant reproduction. J. Ecol., 98, 705–717.
Calvo, P., Nelson, L., Kloepper, J.W. (2014). Agricultural uses of plant biostimulants. Plant Soil, 383, 3–41.
Campbell, D. (1989). Inflorescence size: test of the male function hypothesis. Am. J. Bot., 76, 730–738.
Campbell, D.R., Halama, K.J. (1993). Resource and pollen limitations to life-time seed production in a natural plant-population. Ecology, 74, 1043–1051.
Cane, J.H., Schiffhauer, D. (1997). Nectar production of cranberries: Genotypic differences and insensitivity to soil fertility. J. Am. Soc. Hortic. Sci., 122(5), 665–667.
Cao, G.X., Kudo, G., Ida, T.Y. (2007). Floral sex allocation in a hermpahrodite herb with 1-day flowers, Hosta rectifolia (Liliaceae). Plant Spec. Biol., 22, 191–196.
Cao, G., Xue, L., Li, Y., Pan, K. (2011). The relative importance of architecture and resource competition in allocation to pollen and ovule number within inflorescences of Hosta ventricosa varies with the resource pools. Ann. Bot., 107, 1413–1419.
Denisow, B. (2002). The blooming and melliferous value of tristilous flowers of Japanese quince (Chaenomeles japonica Lindl.). J. Apic. Sci., 46(2), 15–22.
Denisow, B. (2005). Nectar secretion of Sisymbrium loeselii L. in some ruderal phytocenoses in the city of Lublin area. J. Apic. Sci., 49(2), 51–58.
Denisow, B. (2009). Factors determining diurnal dynamics of blooming of chosen plants species. Acta Agrobot., 62(1), 83–89.
Denisow, B., Wrzesień, M. (2007). The anthropogenic refuge areas for bee flora in agricultural landscape. Acta Agrobot., 60(1), 147–157.
Devlin, B., Clegg, J., Ellstrand, N.C. (1992). The effect of flower production on male reproductive success in wild radish populations. Evolution, 46, 1030–1042.
Dhargalkar, V.K., Pereira, N. (2005). Seaweed: promising plant of the millennium. Sci. Cult., 71(3–4), 60–66.
Harper, J.L. (1977). Population biology of plants. Academic Press, London. Hermans, C., Hammond, J.P., White, P.J., Verbruggen, N. (2006). How do plants respond to
nutrient shortage by biomass allocation? Trends Plant Sci., 11, 610–617.
Hotta, Y.Y., Tanaka, T., Takaoka, H., Takeuchi, Y., Konnai, M. (1997). New physiological effects of 5-Aminolevulinic acid in plants: The increase of photosynthesis, chlorophyll content, and plant growth. Biosci. Biotechnol. Biochem., 61(12), 2025–2028.
Jabłoński, B., (2002). Notes on the method to investigate nectar secretion rate in flowers. J. Apic. Sci., 46, 117–124.
Jarosz, Z. (2012). The effect of Pentakeep-V fertilizer on the yielding and content of selected macro- and microelements in lettuce. Annales UMCS Horticultura, 22, 1–8.
Kremen, C., Ricketts, T. (2000). Global perspectives on pollination disruptions. Conserv. Biol., 14, 1226–1228.
Lou, B.S., Hotta, Y., Qu, Y.L., Zhao, J.S., Tanaka, T., Takeuchi, Y., Konnai, M. (1998). Effects of 5-aminolevulinic acid on the growth and ripening of wheat. J. Pestic. Sci., 23, 300–303.
Memon, S.A., Hou, X., Wang, L., Li, Y. (2009). Promotive effect of 5-aminolevulinic acid on chlo-rophyll, antioxidative enzymes and photosynthesis of Pakchoi (Brassica campestris ssp. Chinensis var. communis Tsen et Lee). Acta Physiol. Plant., 31, 51–57.
Mishra, S.N., Srivastava, H.S. (1983). Stimulation of nitrate reductase activity by delta aminolevu-linic acid in excised maize leaves. Experientia, 39, 1118–1120.
Nepi, M., 2007. Nectary structure and ultrastructure. In: Nectaries and nectar, Nicolson, S.W., Nepi, M., Pacini, E. (eds.). Springer Dordrecht, pp. 129–166.
Nicolson, S.W., Thornburg, R.W. (2007). Nectar chemistry. In: Nectaries and nectar, Nicolson, S.W., Nepi, M., Pacini, E. (eds.). Springer, Dordrecht, pp. 215–264.
Nowak, J. (2006). The effect of Pentakeep-V on growth and flowering of chrysanthemum (Chrysanthemum × grandiflorum (Ramat.) Kitam.). http://www.agroniwa.
pl/files/budapeszt_2006_prof._nowak.pdf.
Pacini, E., Nepi, M. (2007). Nectar production and presentation. In: Nectaries and nectar, Nicolson, S.W., Nepi, M., Pacini, E. (eds.). Springer, Dordrecht, pp. 167–205.
Shuel, R.W. (1957). Some aspects of the relation between nectar secretion and nitrogen, phosphorus, and potassium nutrition. Can. J. Plant Sci., 37(3), 220–236.
Smoleń, S., Sady, W., Wierzbińska, J. (2010). The effect of plant biostimulation with ‘Pentakeep-V’ and nitrogen fertilization on yield, nitrogen metabolism and quality of spinach. Acta Sci. Pol. Hortorum Cultus, 9(1), 25–36.
Smoleń, S., Sady, W. (2010). Effect of plant biostimulation with Pentakeep V fertilizer and nitrogen fertilization on the content of macro- and micronutrients in spinach. J. Elementol., 15(2), 343–353.
Stanisz, A. (2007). Przystępny kurs statystyki z zastosowaniem Statistica na przykładach z medycyny. Statsoft Polska. Kraków. 359 pp.
Stephenson, A.G. (1981). Flower and fruit abortion: proximate causes and ultimate function. Annu. Rev. Ecol. Syst., 12, 253–279.
Tanaka, T., Iwai, K., Watanabe, K., Hotta, Y. (2005). Development of 5-aminolevulinic acid for agriculture uses. Regul. Plant Growth Devel., 40(1), 22–29.
Tilly-Mándy, A., Honfi, P., Stefanovits-Bányai, É., Mosonyi, I.D., Köbli, V., Hrotkó, K. (2010). The effect of 5-aminolevulinic-acid (ALA) on the development of Saintpaulia ionantha. Int. J. Hortic. Sci.,16(5), 33–36.
Wróblewska, K., Dębicz, R. (2011). The effect of silicon foliar application on the development of season ornamental plants. Part II: Argyranthemum frutescens ‘Blazer Rose’, Xerochrysum bracteatum ‘Gold’, Osteospermum ecklonis ‘Grande Pink Bush’ and Gaura lindheimeri ‘Corinas Choice’. Acta Agrobot., 64(4), 107–114.
Viik, E., Mand, M., Karise, R., Laaniste, P., Williams, I.H., Luik, A. (2012). The impact of foliar fertilization on the number of bees (Apoidea) on spring oilseed rape. Žemdirb. Agricult., 99(1), 41–46.
von Campe, G., Moschopulos, M., Hefti, M. (2012). 5-Aminolevulinic acid-induced protoporphyrin IX fluorescence as immediate intraoperative indicator to improve the safety of malignant or high-grade brain tumor diagnosis in frameless stereotactic biopsies. Acta Neurochir. (Wien), 154(4), 585–588.
Zych, M., Jakubiec, A. (2006). How much is a bee worth? Economic aspects of pollination of selected crops in Poland. Acta Agrobot., 59, 289–299.
Yaronskaya, E., Vershilovskaya, I., Poers, Y., Alawady, A.E., Averina, N., Grimm, B. (2006). Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta, 224, 700–709.
Yoshida, R,. Ohta, E., Iwai, K., Tanaka, T., Okada, H. (2005). Effects of liquid fertilizer containing 5-aminolevulinic acid on thickening growth in tulip bulbs. 32nd Annual Meeting PGRS of America, July 24–27, Newport Beach, Canada, 91–94.
Yoshida, R., Sonoda, M., Konishi, R., Iwai, K,. Tonaka, T., Okada, H. (2006). Influence of 5-aminolevulinic acid on the efficiency of dry matter production in vegetable pot-seed-lings. Proceedings 33 PGRSA Annual Meeting, July 8–12 Quebec City, Canada, 139–143.

Downloads

Download data is not yet available.

Podobne artykuły

1 2 3 4 5 6 7 8 9 10 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.