Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 21 Nr 3 (2022)

Artykuły

BIODIVERSITY OF FUNGI COLONIZING SCORZONERA (Scorzonera hispanica L.) CULTIVATED WITH THE USE OF BIOSTIMULANTS

DOI: https://doi.org/10.24326/asphc.2022.3.9
Przesłane: 10 września 2021
Opublikowane: 2022-06-30

Abstrakt

Biostimulants are friendly to the soil environment and can effectively improve the plant growth and yielding. The aim of field and laboratory studies was to establish the effect of biostimulants on the growth and on the health status of Scorzonera hispanica L. plants. The field experiment was carried out in south-eastern Poland on Haplic Luvisol. The biostimulants were applied according to the manufacturers’ recommendations. Moreover, the biostimulants Asahi SL (active components: nitroguaiacolate and nitrophenolates), Beta-Chikol (a.s. – chitosan) and Bio-Algeen S90 (extract from seaweed Ascophyllum nodosum) were applied for the pre-sowing seed dressing of scorzonera cv. ´´Duplex´´. For comparison, the fungicide Zaprawa Nasienna T 75 DS/WS (a.s. – tiuram 75%) was used. Untreated seeds served as control. Moreover, the biodiversity of soil-borne fungi colonizing the roots of this vegetable was determined. The number of seedlings and the health status of scorzonera plants were determined during three growing seasons. In each year of the study, both scorzonera seedlings with necrosis symptoms on the roots and the infected roots obtained after scorzonera harvest were subjected to laboratory mycological analysis. The experiments showed that, the emergence and health status of scorzonera seedlings after the application of biostimulants, especially after Beta-Chikol, were significantly better than in the control. Asahi SL and Beta-Chikol were more effective than Bio-Algeen S90 in limiting the occurrence of fungi pathogenic towards scorzonera plants. Diseased scorzonera roots were most frequently colonized by Alternaria scorzonerae, Alternaria alternata, Rhizoctonia solani, Sclerotinia sclerotiorum and Fusarium spp., especially by Fusarium oxysporum. In conclusion, Asahi SL, Beta-Chikol and Bio-Algeen S90 can be recommended as effective biostimulants in field cultivation of Scorzonera hispanica.

Bibliografia

  1. ALKahtani, M.D.F., Attia, K.A., Hafez, Y.M., Khan, N., Eid, A.M., Ali, M.A.M., Abdelaal, K.A.A. (2020). Chlorophyll fluorescence parameters and antioxidant defense system can display salt tolerance of salt acclimated sweet pepper plants treated with chitosan and plant Growth Promoting Rhizobacteria. Agronomy, 10, 1180. https://doi.org/10.3390/agronomy10081180 DOI: https://doi.org/10.3390/agronomy10081180
  2. Battacharyya, D., Babgohari, M.Z., Rathor, P., Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Sci. Hort., 196, 39–48. https://doi.org/10.1016/j.scienta.2015.09.012 DOI: https://doi.org/10.1016/j.scienta.2015.09.012
  3. Begum, M., Bordoloi, B.C., Singha, D.D., Ojha, N.J. (2018). Role of seaweed extract on growth, yield and quality of some agricultural crops: A review. Agric. Rev., 39, 321–326 DOI: https://doi.org/10.18805/ag.R-1838
  4. Calvo, P., Nelson, L., Kloepper, J. (2014). Agricultural uses of plant biostimulants. Plant Soil, 383, 3–41. https://doi.org/ DOI: https://doi.org/10.1007/s11104-014-2131-8
  5. 1007/s11104-014-2131-8
  6. Canellas, L.P., Olivares, F.L., Aguiar, N.O., Jones, D.L., Nebbioso, A., Mazzei, P., Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic., 196, 15–27. https://doi.org/10.1016/j.scienta.2015.09.013 DOI: https://doi.org/10.1016/j.scienta.2015.09.013
  7. Causey, J.L., Freitag, J.M., Gallaher, D.D., Tungland, B.C., Slavin, J.L. (2000). Effects of dietary inulin on serum lipids, blood glucose and the gastrointestinal environment in hypercholesterolemic men. Nutr. Res., 20, 191–201. https://doi.org/10.1016/S0271-5317(99)00152-9 DOI: https://doi.org/10.1016/S0271-5317(99)00152-9
  8. Choi, Y.J., Thines, M. (2015). Host jumps and radiation, not co‐divergence drives diversification of obligate pathogens. A case study in downy mildews and Asteraceae. PLoS ONE, 10, e0133655. https://doi.org/10.1371/journal.pone.o133655 DOI: https://doi.org/10.1371/journal.pone.0133655
  9. Colla, G., Rouphael, Y., Di Mattia, E., El-Nakhel, C., Cardarelli, M. (2015). Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. J. Sci. Food Agric., 95, 1706–1715. https://doi.org/10.1002/jsfa.6875 DOI: https://doi.org/10.1002/jsfa.6875
  10. Dhalaria, R., Verma, R., Kumar, D., Puri, S., Tapwal, A., Kumar, V., Nepovimova, E., Kuca, K. (2020). Bioactive compounds of edible fruits with their anti-aging properties: A comprehensive review to prolong human life. Antioxidans, 9, 1123. https://doi.org/10.3390/antiox9111123 DOI: https://doi.org/10.3390/antiox9111123
  11. Dolota, A., Dąbrowska, B., Radzanowska, J. (2005). Chemical and sensory characteristics of some scorzonera (Scorzonera hispanica L.) cultivars. Acta Hort., 682, 527–533. https://doi.org/10.17660/ActaHortic.2005.682.65 DOI: https://doi.org/10.17660/ActaHortic.2005.682.65
  12. Drobek, M., Frąc, M., Cybulska, J. (2019). Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress – A review. Agronomy, 9, 335. https://doi.org/10.3390/agronomy9060335 DOI: https://doi.org/10.3390/agronomy9060335
  13. Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic., 196, 3-14. https://doi.org/10.1016/j.scienta.2015.09.021 DOI: https://doi.org/10.1016/j.scienta.2015.09.021
  14. Erden, Y., Kırbag, S., Yılmaz, O. (2013). Phytochemical composition and antioxidant activity of some scorzonera species. Proc. Natl. Acad. Sci. India, 83, 271–276. https://doi.org/10.1007/s40011-012-0129-7 DOI: https://doi.org/10.1007/s40011-012-0129-7
  15. Gai, O.Y., Jiao, J., Wang, X., Liu, J., Wang, Z.Y., Fu, Y.J. (2019). Chitosan promoting formononetin and calycoisn accumulation in Astragalus membranaceus hairy root cultures via mitogen-activated protein kinase signaling cascades. Sci. Rep., 9(1), 10367. https://doi.org/10.1038/s41598-019-46820-6 DOI: https://doi.org/10.1038/s41598-019-46820-6
  16. Głosek-Sobieraj, M., Cwalina-Ambroziak, B., Waśkiewicz, A., Hamouz, K., Perczak, A. (2019). The effect of biostimulants on the health status and content of chlorogenic acids in potato tubers (Solanum tuberosum L.) with colored flesh. Gesunde Pflanzen, 71, 45–60. https://doi.org/10.1007/s10343-018-00441-7 DOI: https://doi.org/10.1007/s10343-018-00441-7
  17. Haider, M.W., Ayyub, C.M., Pervez, M.A., Asad, H.U., Manan, A., Raza, S.A., Ashraf, I. (2012). Impact of foliar application of seaweed extract on growth, yield and quality of potato (Solanum tuberosum L.). Soil Environ., 31, 157–162.
  18. Jamiołkowska, A., Skwaryło-Bednarz, B., Patkowska, E., Buczkowska, H., Gałązka, A., Grządziel, J., Kopacki, M. (2020). Effect of mycorrhizal inoculation and irrigation on biological properties of sweet pepper rhizosphere in organic field cultivation. Agronomy, 10, 1693. https://doi.org/10.3390/agronomy10111693 DOI: https://doi.org/10.3390/agronomy10111693
  19. Jiang, T.F., Wang, Y.H., Lv, Z.H., Yue, M.E. (2007). Determination of kava lactones and flavonoid glycoside in Scorzonera austriaca by capillary zone electrophoresis. J. Pharm. Biomem. Anal., 43(3), 854–858. https://doi.org/10.1016/j.jpba.2006.08.024 DOI: https://doi.org/10.1016/j.jpba.2006.08.024
  20. Kaur, N., Gupta, A.K. (2002). Applications of inulin and oligofructose in health and nutrition. J. Biosci., 27, 703–714. https://doi.org/10.1007/BF02708379 DOI: https://doi.org/10.1007/BF02708379
  21. Kocira, A. (2017). Biostymulatory w uprawie soi jako czynnik determinujący cechy biometryczne, plon i skład chemiczny nasion [Biostimulants in soybean cultivation as a factor determining biometric features, yield and chemical composition of seeds]. Monografie i Rozpr. Nauk. IUNG-PIB w Puławach, 54 [in Polish].
  22. Kolida, S., Tuohy, K., Gibson, G.R. (2002). Prebiotic effects of inulin and oligofructose. Br. J. Nutr., 87, 193–197. https://doi.org/10.1079/BJNBJN/2002537 DOI: https://doi.org/10.1079/BJN/2002537
  23. Konopiński, M. (2003). Wpływ zróżnicowanych systemów uprawy na kształtowanie warunków wzrostu, plonowanie i wartość biologiczną skorzonery (Scorzonera hispanica L.). Rozprawy Nauk. AR w Lublinie, 271, pp. 93.
  24. Konopiński, M., Ferens, E. (2011). Influence of cultivation methods and foliar nutrition with Cu and Mn on yields and biological value of scorzonera roots (Scorzonera hispanica L.). Acta Sci. Pol. Hortorum Cultus, 10(4), 141–151.
  25. Koziara, W., Sulewska, H., Panasiewicz, K. (2006). Effect of resistance stymulator application to some agricultural crops. J. Res. Appl. Agric. Eng., 51, 82–87.
  26. Leslie, J.F., Summerell, B.A. (2006). The Fusarium laboratory manual. Blackwell Profesional Publishing, Ames, Iowa, USA. DOI: https://doi.org/10.1002/9780470278376
  27. Lima, C.B.D., Rentschler, L.L.A., Bueno, J.T., Boaventura, A.C. (2016). Plant extracts and essential oils on the control of Alternaria alternata, Alternaria dauci and on the germination and emergence of carrot seeds (Daucus carota L.). Ciênc. Rural, 46, 764–770. https://doi.org/10.1590/0103-8478cr20141660 DOI: https://doi.org/10.1590/0103-8478cr20141660
  28. Liu, R.H. (2013). Dietary bioactive compounds and their health implications. J. Food Sci., 78, 18–25. https://doi.org/10.1111/1750-3841.12101 DOI: https://doi.org/10.1111/1750-3841.12101
  29. Loerakker, W.M.. (1984). A rare leaf spot disease of Scorzonera hispanica, caused by Alternaria scorzonerae (Aderhold) comb. nov. Netherlands J. Plant Pathol., 9, 35–39. DOI: https://doi.org/10.1007/BF02014182
  30. Malik, A., Mor, V.S., Tokas, J., Punia, H., Malik, S., Malik, K., Sangwan, S., Tomar, S., Singh, P., Singh, N., Himangini, Vikram, Nidhi, Singh, G., Vikram, Kumar, V. Sandhya, Karwasra, A. (2021). Biostimulant-treated seedlings under sustainable agriculture: A global perspective facing climate change. Agronomy, 11(1), 14. https://doi.org/10.3390/agronomy11010014 DOI: https://doi.org/10.3390/agronomy11010014
  31. Maroufi, A., Karimi, M., Mehdikhanlou, K., De Loose, M. (2018). Inulin chain length modification using a transgenic approach opening new perspectives for chicory. 3 Biotech., 8, 349. https://doi.org/10.1007/s13205-018-1377-x DOI: https://doi.org/10.1007/s13205-018-1377-x
  32. Mavrodiev, E.V, Edwards, C.E, Albach, D.C., Gitzendanner, D.C., Soltis, P.S., Soltis, D.E. (2004). Phylogenetic relationships in substribe Scorzonerinae (Asteraceae: Cichoridoideae: Cichorieae) based on ITS sequence data. Taxon, 53, 699–712. https://doi.org/10.2307/4135445 DOI: https://doi.org/10.2307/4135445
  33. Mazur, S., Nawrocki, J. (2007). The influence of carrot plant control against Alternaria blight on the root health status after storage. Veget. Crops Res. Bull., 67, 117–125. https://doi.org/10.2478/v10032-007-0036-2 DOI: https://doi.org/10.2478/v10032-007-0036-2
  34. Mielniczuk, E., Patkowska, E., Jamiołkowska, A. (2020). The influence of catch crops on fungal diversity in the soil and health of oat. Plant Soil Environ., 66(3), 99–104. https://doi.org/10.17221/38/2020-PSE DOI: https://doi.org/10.17221/38/2020-PSE
  35. Mulero, J., Abellán, J., Zafrilla, P., Amores, D., Sánchez P.H. (2015). Bioactive substances with preventive effect in cardiovascular diseases. Nutr. Hosp., 32, 1462–1467. https://doi.org/10.3305/nh.2015.32.4.9510
  36. Nawrocki, J. (2005). Podatność siewek różnych odmian pietruszki korzeniowej na porażenie przez patogeny grzybowe. Acta Agrobot., 58, 163–170. DOI: https://doi.org/10.5586/aa.2005.042
  37. Ogórek, R., Pląskowska, E., Skrobiszewski, A. (2011). The effect of Asahi SL biostimulatoron the growth of selected species of Fusarium on different culture media. Phytopathologia, 62, 49–55.
  38. Patkowska, E. (2005). The effect of biopreparations on the healthiness of soybean cultivated in a growth chamber experiment. Electr. J. Pol. Agric. Univer. Hortic., 8, 08.
  39. Patkowska, E. (2020). Soil-borne microorganisms threatening carrot cultivated with the use of cover crops. Acta Sci. Pol. Hortorum Cultus, 19(4), 71–86. https://doi.org/10.24326/asphc.2020.4.7 DOI: https://doi.org/10.24326/asphc.2020.4.7
  40. Patkowska, E., Konopiński, M. (2008a). Pathogenicity of selected soil-borne microorganisms for the seedlings of scorzonera (Scorzonera hispanica L.). Folia Hortic, 20(1), 31–42. https://doi.org/10.2478/fhort-2013-0104 DOI: https://doi.org/10.2478/fhort-2013-0104
  41. Patkowska, E., Konopiński, M. (2008b). Pathogenicity of fungi colonising the soil after the cultivation of cover crops towards the seedlings of salsify (Tragopogon porrifolius var. sativus (Gaterau) Br.). Folia Hort., 20(2), 75–84. https://doi.org/10.2478/fhort-2013-0116 DOI: https://doi.org/10.2478/fhort-2013-0116
  42. Patkowska, E., Konopiński, M. (2011). Cover crops and soil-borne fungi dangerous towards the cultivation of salsify (Tragopogon porrifolius var. sativus (Gaterau) Br.). Acta Sci Pol. Hortorum Cultus, 10(2), 167–181.
  43. Patkowska, E., Konopiński, M. (2013a). Fungi threatening scorzonera (Scorzonera hispanica L.) cultivation using plant mulches. Acta Sci Pol. Hortorum Cultus, 12(6), 215–225.
  44. Patkowska, E., Konopiński, M. (2013b). Harmfulness of soil-borne fungi towards root chicory (Cichorium intybus L. var. sativum Bisch.) cultivated with the use of cover crops. Acta Sci Pol. Hortorum Cultus, 12(4), 3–18.
  45. Patkowska, E., Krawiec, M. (2016). Yielding and healthiness of pea cv. ‘Sześciotygodniowy TOR’ after applying biotechnical preparations. Acta Sci. Pol. Hortorum Cultus, 15(2), 143–156.
  46. Patkowska, E., Mielniczuk, E., Jamiołkowska, A., Skwaryło-Bednarz, B., Błażewicz-Woźniak, M. (2020). The influence of Trichoderma harzianum Rifai T-22 and other biostimulants on rhizosphere beneficial microorganisms of carrot. Agronomy, 10(11), 1637. https://doi.org/10.3390/agronomy10111637 DOI: https://doi.org/10.3390/agronomy10111637
  47. Pięta, D., Patkowska, E., Pastucha, A. (2005). The protective effect of biopreparations applied as the dressing for common bean (Phaseolus vulgaris L.) and pea (Pisum sativum L.). Acta Sci. Pol. Hortorum Cultus, 4(2), 59–67.
  48. Pusz, W., Pląskowska, E. (2008). Wpływ stosowania preparatu Asahi SL na zdrowotność rzepaku ozimego. Zesz. Probl. Post. Nauk Roln., 531, 185–191.
  49. Petkova, N. (2018). Characterization of inulin from black salsify (Scorzonera hispanica L.) for food and pharmaceutical purposes. Asian J. Pharm. Clin. Res., 11(12), 221–225. https://doi.org/10.22159/ajpcr.2018.v11i12.28262 DOI: https://doi.org/10.22159/ajpcr.2018.v11i12.28262
  50. Pylak, M., Oszust, K., Frąc, M. (2019). Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Rev. Environ. Sci. Biotechnol., 18, 597–616. https://doi.org/10.1007/s11157-019-09500-5 DOI: https://doi.org/10.1007/s11157-019-09500-5
  51. Ramirez, C. (1982). Manual and atlas of the Penicillia. Elsevier Biomedical Press Amsterdam, New York, Oxford.
  52. Ricci, M., Tilbury, L., Daridon, B., Sukalac, K. (2019). General principles to justify plant biostimulant claims. Front. Plant Sci., 10, 494. https://doi.org/10.3389/fpls.2019.00494 DOI: https://doi.org/10.3389/fpls.2019.00494
  53. Roberfroid, M.B. (2002). Functional foods: concepts and application to inulin and oligofructose. British J. Nutr., 87, 139–143. https://doi.org/10.1079/BJNBJN/2002529 DOI: https://doi.org/10.1079/BJNBJN/2002529
  54. Robledo-Buriticá, J., Aristizábal-Loaiza, J.C., Ceballos-Aguirre, N., Cabra Cendales, T. (2018). Influence of plant growth-promoting rhizobacteria (PGPR) on blackberry (Rubus glaucus Benth. cv. Thornless) growth under semi-cover and field conditions. Acta Agron., 67(2), 258–263. https://doi.org/10.15446/ACAG.V67N2.62572 DOI: https://doi.org/10.15446/acag.v67n2.62572
  55. Sawicka, B., Krochmal-Marczak, B. (2009). Wpływ stosowania nawozu dolistnego Insol 7 i bioregulatora Asahi SL na zdrowotność bulw kilku odmian ziemniaka. Ann. UMCS, s. E, Agricultura, 64(2), 29–38. DOI: https://doi.org/10.24326/as.2009.2.6
  56. Seema, K., Mehta, K., Singh, N. (2018). Studies on the effect of plant growth promoting rhizobacteria (PGPR) on growth, physiological parameters, yield and fruit quality of strawberry cv. Chandler. J. Pharmacog. Phytochem., 7, 383–387.
  57. Shafaghat, A., Salimi, F., Amani-Hooshyar, V. (2012). Phytochemical and antimicrobial activities of Lavandula officinalis leaves and steams against some pathogenic microorganisms. J. Med. Plants Res., 6(3), 455–460. https://doi.org/10.5897/JMPR11.1166 DOI: https://doi.org/10.5897/JMPR11.1166
  58. Sharma, H.S.S., Fleming, C., Selby, C., Rao, J.R., Martin, T. (2014). Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol., 26(1), 465–490. http://dx.doi.org/10.1007%2Fs10811-013-0101-9 DOI: https://doi.org/10.1007/s10811-013-0101-9
  59. Singh, R.S., Singh, R.P. (2010). Production of fructooligosaccharides from inulin by endoinulinases and their prebiotic potential. Food Technol. Biotechnol., 48, 435–450.
  60. Smolińska, U., Kowalska, B. (2018). Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum – a review. J. Plant Pathol., 100, 1–12. https://doi.org/10.1007/s42161-018-0023-0 DOI: https://doi.org/10.1007/s42161-018-0023-0
  61. Wadas, W., Dziugieł, T. (2020). Changes in assimilation area and chlorophyll content of very early potato (Solanum tuberosum L.) cultivars as influenced by biostimulants. Agronomy, 10, 387. https://doi.org/10.3390/agronomy10030387 DOI: https://doi.org/10.3390/agronomy10030387
  62. Wierzbowska, J., Cwalina-Ambroziak, B., Głosek-Sobieraj, M., Sienkiewicz, S. (2015). Effect of biostimulators on yield and selected chemical properties of potato. J. Elem., 20, 575–768. https://doi.org/10.5601/jelem.2014.19.4.799 DOI: https://doi.org/10.5601/jelem.2014.19.4.799
  63. Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., Nasrulhaq Boyce, A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability. A review. Molecules, 21, 573. https://doi.org/10.3390/molecules21050573 DOI: https://doi.org/10.3390/molecules21050573
  64. Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A., Brown, P.H. (2017). Biostimulants in plant science: A global perspective. Front. Plant Sci., 7, 2049. https://doi.org/10.3389/fpls.2016.02049 DOI: https://doi.org/10.3389/fpls.2016.02049
  65. Zhao, D., Zhao, H., Zhao, D., Zhu, X., Wang, Y., Duan, Y., Xuan, Y., Chen, L. (2018). Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease. Biol. Control, 119, 12–19. https://doi.org/10.1016/j.biocontrol.2018.01.004 DOI: https://doi.org/10.1016/j.biocontrol.2018.01.004

Downloads

Download data is not yet available.

Inne teksty tego samego autora

1 2 3 4 5 > >> 

Podobne artykuły

<< < 83 84 85 86 87 88 89 90 91 92 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.