Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 22 Nr 5 (2023)

Artykuły

The influence of plant extracts on root biostimulation in different strawberry (Fragaria × ananassa Duchense) cultivars

DOI: https://doi.org/10.24326/asphc.2023.5050
Przesłane: 21 lutego 2023
Opublikowane: 2023-10-30

Abstrakt

The use of botanical extracts is considered an important tool to stimulate plant growth, reduce the use of synthetic pesticides, or both. The impact of hydro-alcoholic extracts of Calendula officinalis, Salvia officinalis, Tagetes sp., and Taraxacum officinale on growth and root development of plants of five strawberry cultivars (‘Albion’, ‘Florence’, ‘Magnum’, ‘Rumba’, and ‘San Andreas’) grown in semi-field controlled conditions was tested in the present study. The vigor and growth of the five strawberry genotypes were significantly affected by the extracts, with cv. Florence consistently producing more biomass than any other variety compared to the untreated control. The extracts also impacted the root system differently depending on the specific genotype. However, the C. officinalis flower extract consistently improved the root architecture, increasing the value of five out of six parameters compared to the control. The genotype-related response points to the strong influence of the “variety factor” on the possible effect of plant extracts considered for biostimulation, plant protection purposes, or both, prompting the need for additional work to unravel the bottlenecks in using botanicals.

Bibliografia

  1. Acheuk, F., Basiouni, S., Shehata, A.A., Dick, K., Hajri, H., Lasram, S., Yilmaz, M., Emekci, M., Tsiamis, G., Spona-Friedl, M., May-Simera, H., Eisenreich, W., Ntougias, S. (2022). Status and prospects of botanical biopesticides in Europe and Mediterranean countries. Biomolecules, 12(2), 311. https://doi.org/10.3390/biom12020311 DOI: https://doi.org/10.3390/biom12020311
  2. Afonso, A.F., Pereira, O.R., Fernandes, Â., Calhelha, R.C., Silva, A.M.S., Ferreira, I.C.F.R., Cardoso, S.M. (2019). Phytochemical composition and bioactive effects of Salvia africana, Salvia officinalis ‘Icterina’ and Salvia mexicana aqueous extracts. Molecules, 24(23), 4327. https://doi.org/10.3390/molecules24234327 DOI: https://doi.org/10.3390/molecules24234327
  3. Ariza, M.T., Miranda, L., Gómez-Mora, J.A., Medina, J.J., Lozano, D., Gavilán, P., Soria, C., Martínez-Ferri, E. (2021). Yield and fruit quality of strawberry cultivars under different irrigation regimes. Agronomy, 11(2), 261. https://doi.org/10.3390/agronomy11020261 DOI: https://doi.org/10.3390/agronomy11020261
  4. Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., Jahurul, M.H.A., Ghafoor, K., Norulaini, N.A.N., Omar, A.K.M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng., 117(4), 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014 DOI: https://doi.org/10.1016/j.jfoodeng.2013.01.014
  5. Cheynier, V., Comte, G., Davies, K.M., Lattanzio, V., Martens, S. (2013). Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem., 72, 1–20. https://doi.org/10.1016/j.plaphy.2013.05.009 DOI: https://doi.org/10.1016/j.plaphy.2013.05.009
  6. El-Miniawy, S.M., Ragab, M.E., Youssef, S.M., Metwally, A.A. (2014). Influence of foliar spraying of seaweed extract on growth, yield and quality of strawberry plants. J. Appl. Sci. Res., 10(2), 88–94.
  7. European Commission (2020). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A Farm to Fork Strategy for a fair, healthy and environmentally-friendly food system. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0381 [date of access: 10.01.2023].
  8. European Commission (2021). Commission Implementing Regulation (EU) 2021/1165 of 15 July 2021 authorising certain products and substances for use in organic production and establishing their lists. Available: https://eur-lex.europa.eu/eli/reg_impl/2021/1165/oj [date of access: 10.01.2023].
  9. Food and Agriculture Organization of the United Nations (2021). FAOSTAT statistical database. [Rome]: FAO, c1997. Available: https://www.fao.org/faostat/ [date of access: 10.01.2023].
  10. Glick, B.R., Penrose, D.M., Li, J. (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol., 190(1), 63–68. https://doi.org/10.1006/jtbi.1997.0532 DOI: https://doi.org/10.1006/jtbi.1997.0532
  11. Godlewska, K., Ronga, D., Michalak, I. (2021). Plant extracts – importance in sustainable agriculture. Italian J. Agron., 16(2). https://doi.org/10.4081/ija.2021.1851 DOI: https://doi.org/10.4081/ija.2021.1851
  12. Gruber, B.D., Giehl, R.F.H., Friedel, S., von Wirén, N. (2013). Plasticity of the arabidopsis root system under nutrient deficiencies. Plant Physiol., 163(1), 161–179. https://doi.org/10.1104/pp.113.218453 DOI: https://doi.org/10.1104/pp.113.218453
  13. Hartmann, T. (2007). From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry, 68(22–24), 2831–2846. https://doi.org/10.1016/j.phytochem.2007.09.017 DOI: https://doi.org/10.1016/j.phytochem.2007.09.017
  14. Hinsinger, P., Plassard, C., Tang, C., Jaillard, B. (2003). Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil, 248(1), 43–59. https://doi.org/10.1023/A:1022371130939 DOI: https://doi.org/10.1023/A:1022371130939
  15. Khursheed, A., Rather, M.A., Jain, V., Wani, A.R., Rasool, S., Nazir, R., Malik, N.A., Majid, S.A. (2022). Plant based natural products as potential ecofriendly and safer biopesticides: a comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microbial Path., 173(A), 105854. https://doi.org/10.1016/j.micpath.2022.105854 DOI: https://doi.org/10.1016/j.micpath.2022.105854
  16. Klamkowski, K., Treder, W. (2008). Response to drought stress of three strawberry cultivars grown under greenhouse conditions. J. Fruit Ornam. Plant Res., 16(16), 179–188.
  17. Kowalczyk, K., Gajc-Wolska, J., Mirgos, M., Geszprych, A., Kowalczyk, W., Sieczko, L., Niedzińska, M., Gajewski, M. (2020). Mineral nutrients needs of cucumber and its yield in protected winter cultivation, with HPS and LED supplementary lighting. Scientia Hortic., 265, 109217. https://doi.org/10.1016/j.scienta.2020.109217 DOI: https://doi.org/10.1016/j.scienta.2020.109217
  18. Lambrecht, M., Okon, Y., Broek, A.V., Vanderleyden, J. (2000). Indole-3-acetic acid: a reciprocal signalling molecule in bacteria–plant interactions. Trends Microbiol., 8(7), 298–300. https://doi.org/10.1016/S0966-842X(00)01732-7 DOI: https://doi.org/10.1016/S0966-842X(00)01732-7
  19. López-Bucio, J., Cruz-Ramírez, A., Herrera-Estrella, L. (2003). The role of nutrient availability in regulating root architecture. Curr. Opinion Plant Biol., 6(3), 280–287. https://doi.org/10.1016/s1369-5266(03)00035-9 DOI: https://doi.org/10.1016/S1369-5266(03)00035-9
  20. Malamy, J.E. (2005). Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ., 28(1), 67–77. https://doi.org/10.1111/j.1365-3040.2005.01306.x DOI: https://doi.org/10.1111/j.1365-3040.2005.01306.x
  21. Mattner, S.W., Milinkovic, M., Arioli, T. (2018). Increased growth response of strawberry roots to a commercial extract from Durvillaea potatorum and Ascophyllum nodosum. J. Appl. Phycol., 30(5), 2943–2951. https://doi.org/10.1007/s10811-017-1387-9 DOI: https://doi.org/10.1007/s10811-017-1387-9
  22. Mia, M.J., Furmanczyk, E.M., Golian, J., Kwiatkowska, J., Malusá, E., Neri, D. (2021). Living mulch with selected herbs for soil management in organic apple orchard. Horticulturae, 7(3), 59. https://doi.org/10.3390/horticulturae7030059 DOI: https://doi.org/10.3390/horticulturae7030059
  23. Nelofer, J., Andrabi, K.I., Riffat, J. (2017). Calendula officinalis – an important medicinal plant with potential biological properties. Proc. Indian Nat. Sci. Acad., 83(4), 769–787. https://doi.org/10.16943/ptinsa/2017/49126 DOI: https://doi.org/10.16943/ptinsa/2017/49126
  24. Osmont, K.S., Sibout, R., Hardtke, C.S. (2007). Hidden branches: developments in root system architecture. Ann. Rev. Plant Biol., 58(1), 93–113. https://doi.org/10.1146/annurev.arplant.58.032806.104006 DOI: https://doi.org/10.1146/annurev.arplant.58.032806.104006
  25. de Pedro, L., Perera-Fernández, L.G., López-Gallego, E., Pérez-Marcos, M., Sanchez, J.A. (2020). The effect of cover crops on the biodiversity and abundance of ground-dwelling arthropods in a Mediterranean pear orchard. Agronomy, 10(4), 580. https://doi.org/10.3390/agronomy10040580 DOI: https://doi.org/10.3390/agronomy10040580
  26. Petrovska, B. (2012). Historical review of medicinal plants’ usage. Pharmacogn. Rev., 6(11), 1–5. https://doi.org/10.4103/0973-7847.95849 DOI: https://doi.org/10.4103/0973-7847.95849
  27. R Core Team. (2020). R: A language and environment for statistical computing. Available: https://www.r-project.org/ [date of access: 22.06.2022].
  28. Salehi, B., Valussi, M., Morais-Braga, M.F.B., Carneiro, J.N.P., Leal, A.L.A.B., Coutinho, H.D.M., Vitalini, S., Kręgiel, D., Antolak, H., Sharifi-Rad, M., Silva, N.C.C., Yousaf, Z., Martorell, M., Iriti, M., Carradori, S., Sharifi-Rad, J. (2018). Tagetes spp. essential oils and other extracts: chemical characterization and biological activity. Molecules, 23(11), 2847. https://doi.org/10.3390/molecules23112847 DOI: https://doi.org/10.3390/molecules23112847
  29. Seiber, J.N., Coats, J., Duke, S.O., Gross, A.D. (2014). Biopesticides: state of the art and future opportunities. J. Agric. Food Chem., 62(48), 1613–11619. https://doi.org/10.1021/jf504252n DOI: https://doi.org/10.1021/jf504252n
  30. Tartanus, M., Kowalczyk, W., Malusà, E. (2022). Effect of plant extracts on strawberry plants in relation to Melolontha spp. grubs damage. Acta Hortic.,1354, 181–186. https://doi.org/10.17660/ActaHortic.2022.1354.23 DOI: https://doi.org/10.17660/ActaHortic.2022.1354.23
  31. Turchen, L.M., Cosme-Júnior, L., Guedes, R.N.C. (2020). Plant-derived insecticides under meta-analyses: status, biases, and knowledge gaps. Insects, 11(8), 532. https://doi.org/10.3390/insects11080532 DOI: https://doi.org/10.3390/insects11080532
  32. Weemstra, M., Mommer, L., Visser, E.J.W., van Ruijven, J., Kuyper, T.W., Mohren, G.M.J., Sterck, F.J. (2016). Towards a multidimensional root trait framework: A tree root review. New Phytol., 211(4), 1159–1169. https://doi.org/10.1111/nph.14003 DOI: https://doi.org/10.1111/nph.14003
  33. Wright, A.F., Bailey, J.S. (2001). Organic carbon, total carbon, and total nitrogen determinations in soils of variable calcium carbonate contents using a Leco CN-2000 dry combustion analyzer. Commun. Soil Sci. Plant Anal., 32(19 –20), 3243–3258. https://doi.org/10.1081/CSS-120001118 DOI: https://doi.org/10.1081/CSS-120001118
  34. Yuan, B., Sun, J. (2022). Bibliometric analysis of strawberry (Fragaria × ananassa Duch.) research from Plant Sciences category based on Web of Science. Folia Hortic., 34(2), 1–15. https://doi.org/10.2478/fhort-2021-0024 DOI: https://doi.org/10.2478/fhort-2021-0024

Downloads

Download data is not yet available.

Podobne artykuły

<< < 14 15 16 17 18 19 20 21 22 23 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.