Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 23 Nr 6 (2024)

Artykuły

Calcium chloride regulates cellular calcium metabolism during the postharvest senescence of ripe passion fruit

DOI: https://doi.org/10.24326/asphc.2024.5352
Przesłane: 4 marca 2024
Opublikowane: 2024-12-20

Abstrakt

The impact of calcium chloride (CaCl2) treatment and water soaking on the postharvest senescence of the ripened passion fruit was investigated. The physicochemical indexes including weight loss, color change, membrane permeability, malondialdehyde (MDA) content, total phenolics, flavonoids, ascorbic acid content, peroxidase (POD), polyphenol oxidase (PPO), and distinct forms of calcium of the fruit were determined using the established methods for analysis. The correlation and principal component analyses were also conducted on the experimental data. The results demonstrated that the calcium ions were effective in maintaining the appearance and color of the fruit peel, enhancing its antioxidant capacity, and regulating its nutrient content. This treatment significantly increased the calcium content of the passion fruit peels, extending the fruit’s freshness beyond four days. The correlation analysis revealed a positive correlation between the mass loss rate of the passion fruit and the majority of the physicochemical properties examined. The findings indicated that the calcium chloride treatment could effectively maintain fruit storage quality and prolong the shelf life of postharvest passion fruit by several days. It seems reasonable to posit that calcium chloride will become the preferred method for postharvest fruit preservation in the near future.

Bibliografia

  1. Ali, S., Anjum, M.A., Nawaz, A., Naz, S., Ejaz, S., Sardar, H., Saddiq, B. (2020). Tragacanth gum coating modulates oxidative stress and maintains quality of harvested apricot fruits. Int. J. Biol. Macromol., 163, 2439–2447. https://doi.org/10.1016/j.ijbiomac.2020.09.179
  2. Arabia, A., Munné-Bosch, S., Muñoz, P. (2024). Ascorbic acid as a master redox regulator of fruit ripening. Postharvest Biol. Technol., 207, 112614. https://doi.org/10.1016/j.postharvbio.2023.112614
  3. Cai, S., Zhang, Z., Wang, J., Fu, Y., Zhang, Z., Khan, M.R., Cong, X. (2024). Effect of exogenous melatonin on postharvest storage quality of passion fruit through antioxidant metabolism. LWT, 194, 115835. https://doi.org/10.1016/j.lwt.2024.115835
  4. Chen, D., Ding, A., Zhu, L., Grauwet, T., Van Loey, A., Hendrickx, M., Kyomugasho, C. (2023). Phytate and mineral profile evolutions to explain the textural hardening of common beans (Phaseolus vulgaris L.) during postharvest storage and soaking: insights obtained through a texture-based classification approach. Food Chem., 404, 134531. https://doi.org/10.1016/j.foodchem.2022.134531
  5. da Silva, A.P., Vieites, R.L. (2000). Changes in the physical characteristics of the sweet passion fruit submitted to immersion in solution of calcium chloride. Food Sci. Technol., 20, 56-59. https://doi.org/10.1590/S0101-20612000000100012
  6. Deng, X. (2008). Mechanisms of calcium-induced firmness in fruits, vegetables, and mushrooms. In: Master thesis. University of Tennessee, Knoxville, Tennessee, p. 121. Available: https://trace.tennessee.edu/cgi/viewcontent.cgi?article=5010&context=utk_gradthes [date of access: 13.11.2024]
  7. Dong, C.X., Zhou, J.M., Fan, X.H., Wang, H.Y., Duan, Z.Q., Tang, C. (2004). Application methods of calcium supplements affect nutrient levels and calcium forms in mature tomato fruits. J. Plant Nutr., 27(8), 1443–1455. https://doi.org/10.1081/PLN-200025861
  8. dos Reis, L.C.R., Facco, E.M.P., Salvador, M., Flôres, S.H., Rios, A.D. (2018). Antioxidant potential and physicochemical characterization of yellow, purple and orange passion fruit. J. Food Sci. Technol., 55, 2679–2691. https://doi.org/10.1007/s13197-018-3190-2
  9. Dutra, J.B., Blum, L.E.B., Lopes, L.F., Cruz, A.F., Uesugi, C.H. (2018). Use of hot water, combination of hot water and phosphite, and 1-MCP as post-harvest treatments for passion fruit (Passiflora edulis f. flavicarpa) reduces anthracnose and does not alter fruit quality. Hortic. Environ. Biotechnol., 59, 847–856. https://doi.org/10.1007/s13580-018-0092-1
  10. Fonseca, A.M.A, Geraldi, M.V., Maróstica Junior, M.R., Silvestre, A.J.D., Rocha, S.M. (2022). Purple passion fruit (Passiflora edulis f. edulis): a comprehensive review on the nutritional value, phytochemical profile and associated health effects. Food Res. Int., 160, 111665. https://doi.org/10.1016/j.foodres.2022.111665
  11. Fu, W., Zhang, M., Zhang, P., Liu, Z., Dong, T., Zhang, S., Ren, Y., Jia, H., Fang, J. (2021). Transcriptional and metabolite analysis reveal a shift in fruit quality in response to calcium chloride treatment on ‘Kyoho’ grapevine. J. Food Sci. Tech. Mys., 58(6), 2246–2257. https://doi.org/10.1007/s13197-020-04735-5
  12. González-Gordo, S., Muñoz-Vargas, M.A., Palma, J.M., Corpas, F.J. (2023). Class III peroxidases (POD) in pepper (Capsicum annuum L.): genome-wide identification and regulation during nitric oxide (NO)-influenced fruit ripening. Antioxidants, 12(5), 1013. https://doi.org/10.3390/antiox12051013
  13. Guo, R., Tian, S., Li, X., Wu, X., Liu, X., Li, D., Liu, Y., Ai, L., Song, Z., Wu, Y. (2020). Pectic polysaccharides from purple passion fruit peel: a comprehensive study in macromolecular and conformational characterizations. Carbohydr. Polym., 229, 115406. https://doi.org/10.1016/j.carbpol.2019.115406
  14. Hou, Y., Li, Z., Zheng, Y., Jin, P. (2021). Effects of CaCl2 treatment alleviates chilling injury of loquat fruit (Eribotrya japonica) by modulating ROS homeostasis. Foods, 10(7), 1662. https://doi.org/10.3390/foods10071662
  15. Kou, X., Wu, M., Li, L., Wang, S., Xue, Z., Liu, B., Fei, Y. (2015). Effects of CaCl2 dipping and pullulan coating on the development of brown spot on ‘Huangguan’ pears during cold storage. Postharvest Biol. Technol., 99, 63–72. https://doi.org/10.1016/j.postharvbio.2014.08.001
  16. Kou, X., Yang, S., Chai, L., Wu, C., Zhou, J., Liu, Y., Xue, Z. (2021). Abscisic acid and fruit ripening: multifaceted analysis of the effect of abscisic acid on fleshy fruit ripening. Sci. Hortic., 281, 109999. https://doi.org/10.1016/j.scienta.2021.109999
  17. Langsrud, Ø., Næs, T. (2003). Optimised score plot by principal components of predictions. Chemometr. Intel. Labor. Syst., 68(1–2), 61–74. https://doi.org/10.1016/S0169-7439(03)00088-1
  18. Li, Y., Ma, D., Sun, D., Wang, C., Zhang, J., Xie, Y., Guo, T. (2015). Total phenolic, flavonoid content, and antioxidant activity of flour, noodles, and steamed bread made from different colored wheat grains by three milling methods. Crop J., 3(4), 328–334. https://doi.org/10.1016/j.cj.2015.04.004
  19. Loaharanu, P., Ahmed, M. (1991). Advantages and disadvantages of the use of irradiation for food preservation. J. Agric. Environ. Ethics 4, 14–30. https://doi.org/10.1007/BF02229144
  20. Madani, B., Mirshekari, A., Yahia, E. (2016). Effect of calcium chloride treatments on calcium content, anthracnose severity and antioxidant activity in papaya fruit during ambient storage. J. Sci. Food Agric., 96(9), 2963–2968. https://doi.org/10.1002/jsfa.7462
  21. Markus, F., Daood, H.G., Kapitany, J., Biacs, P.A. (1999). Change in the carotenoid and antioxidant content of spice red pepper (paprika) as a function of ripening and some technological factors. J. Agric. Food. Chem., 47(1), 100–107. https://pubs.acs.org/doi/10.1021/jf980485z
  22. Martin-Diana, A.B., Rico, D., Frias, J.M., Barat, J.M., Henehan, G.T.M., Barry-Ryan, C. (2007). Calcium for extending the shelf life of fresh whole and minimally processed fruits and vegetables: a review. Trends Food Sci. Technol., 18(4), 210–218. https://doi.org/10.1016/j.tifs.2006.11.027
  23. Nair, M.S., Tomar, M., Punia, S., Kukula-Koch, W., Kumar, M. (2020). Enhancing the functionality of chitosan-and alginate-based active edible coatings/films for the preservation of fruits and vegetables: a review. Int. J. Biol. Macromol., 164, 304–320. https://doi.org/10.1016/j.ijbiomac.2020.07.083
  24. Nam, H.A., Ramakrishnan, S.R., Kwon, J.H. (2019). Effects of electron-beam irradiation on the quality characteristics of mandarin oranges (Citrus unshiu (Swingle) Marcov) during storage. Food Chem., 286, 338–345. https://doi.org/10.1016/j.foodchem.2019.02.009
  25. Nath, P., Pandey, N., Samota, M., Sharma, K., Kale, S., Kannaujia, P., Sethi, S., Chauhan, O.P. (2022). Browning reactions in foods. In: Advances in food chemistry: food components, processing and preservation, Chauhan, O.P. (ed.). Springer Nature, Singapore, 117–159. Available: https://link.springer.com/chapter/10.1007/978-981-19-4796-4_4 [date of access: 12.11.2024]
  26. Nie, Z., Huang, Q., Chen, C., Wan, C., Chen, J. (2020). Chitosan coating alleviates postharvest juice sac granulation by mitigating ROS accumulation in harvested pummelo (Citrus grandis L. Osbeck) during room temperature storage. Postharvest Biol. Technol., 169, 111309. https://doi.org/10.1016/j.postharvbio.2020.111309
  27. Niu, Y.F., Ni, S.B., Liu, S.H., Liu, J. (2021). The complete chloroplast genome of Passiflora caerulea, a tropical fruit with a distinctive aroma. Mitochondrial DNA B, 6(2), 488–490. https://doi.org/10.1080/23802359.2021.1872442
  28. Oz, A.T., Ulukanli, Z. (2014). The effects of calcium chloride and 1-methylcyclopropene (1-MCP) on the shelf life of mulberries (Morus alba L.). J. Food Proc. Preserv., 38(3), 1279–1288. https://doi.org/10.1111/jfpp.12089
  29. Pervaiz, T., Songtao, J., Faghihi, F., Haider, M.S., Fang, J. (2017). Naturally occurring anthocyanin, structure, functions and biosynthetic pathway in fruit plants. J. Plant Biochem. Physiol., 5(2), 1–9. https://doi.org/10.4172/2329-9029.1000187
  30. Sangsoy, K., Sanongkiet, S., Srisamlee, S., Beckles, D.M., Luengwilai, K. (2024). Role of enzymatic browning and calcium transporters in internal browning of pineapple fruit. Postharvest Biol. Technol., 218, 113174. https://doi.org/10.1016/j.postharvbio.2024.113174
  31. Sati, F., Qubbaj, T. (2021). Effect of calcium chloride postharvest treatment in combination with plant natural substance coating on fruit quality and storability of tomato (Solanum lycopersicum) fruits during cold storage. J. Appl. Bot. Food Qual., 94, 100–107. https://doi.org/10.5073/JABFQ.2021.094.012
  32. Suttanew, A., Chumpookam, J., Lin, H.L. (2022). Effect of hot water treatment combined with calcium chloride on postharvest disease and quality in red pitaya (Hylocereus polyrhizus). Hortic. NCHU, 47(1), 15–30. Available: https://hort.nchu.edu.tw/publication/view/105 [date of access: 12.11.2024]
  33. Valenzuela, J.L., Manzano, S., Palma, F., Carvajal, F., Garrido, D., Jamilena, M. (2017). Oxidative stress associated with chilling injury in immature fruit: postharvest technological and biotechnological solutions. Int. J. Mol. Sci., 18(7), 1467. https://doi.org/10.3390/ijms18071467
  34. Venâncio, J.B., Silveira, M.D., Fehlauer, T.V., Pegorare, A.B., Rodrigues, E.T., Araújo, W.F. (2013). Postharvest conservation of yellow passion fruits by hydrothermal and calcium chloride treatments. Científica, 41(2), 122–129. Available: https://www.academia.edu/69747021 [date of access: 12.11.2024]
  35. Wang, H., Iqbal, A., Murtaza, A., Xu, X., Pan, S., Hu, W. (2023). A review of discoloration in fruits and vegetables: formation mechanisms and inhibition. Food Rev. Int., 39(9), 6478–6499. https://doi.org/10.1080/87559129.2022.2119997
  36. Wei, D., Zhao, X.H. (2020). Calcium maintained higher quality and enhanced resistance against chilling stress by regulating enzymes in reactive oxygen and biofilm metabolism of Chinese winter jujube fruit. J. Food Biochem., 44, e13161. https://doi.org/10.1111/jfbc.13161
  37. Xie, J., Qin, Z., Pan, J., Li, J., Li, X., Khoo, H.E., Dong, X. (2022). Melatonin treatment improves postharvest quality and regulates reactive oxygen species metabolism in ‘Feizixiao’ litchi based on principal component analysis. Front. Plant Sci., 13, 965345. https://doi.org/10.3389/fpls.2022.965345
  38. Xu, H., Qiao, P., Pan, J., Qin, Z., Li, X., Khoo, H.E., Dong, X. (2023). CaCl2 treatment effectively delays postharvest senescence of passion fruit. Food Chem., 417, 135786. https://doi.org/10.1016/j.foodchem.2023.135786
  39. Xu, L., Gao, L., Meng, J., Chang, M. (2022). Browning inhibition and postharvest quality of button mushrooms (Agaricus bisporus) treated with alginate and ascorbic acid edible coating. Int. Food Res. J., 29(1), 106–115. https://doi.org/10.1016/j.foodchem.2013.10.073
  40. Xu, W., Peng, H., Yang, T., Whitaker, B., Huang, L., Sun, J., Chen, P. (2014). Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation. Plant Physiol. Biochem., 82, 289–298. https://doi.org/10.1016/j.plaphy.2014.06.015
  41. Zhang, L., Wang, J.W., Zhou, B., Li, G.D., Liu, Y.F., Xia, X.L., Xiao, Z.G., Lu, F., Ji, S.J. (2019a). Calcium inhibited peel browning by regulating enzymes in membrane metabolism of ‘Nanguo’ pears during post-ripeness after refrigerated storage. Sci. Hortic., 244, 15–21. https://doi.org/10.1016/j.scienta.2018.09.030
  42. Zhang, L., Wang, J.W., Chen, J.Y., Song, T., Jiang, Y.G., Zhang, Y.F., Wang, L.J., Li, F.L. (2019b). Preharvest spraying calcium ameliorated aroma weakening and kept higher aroma-related genes expression level in postharvest ‘Nanguo’ pears after long-term refrigerated storage. Sci. Hortic., 247, 287–295. https://doi.org/10.1016/j.scienta.2018.12.038
  43. Zhang, X., Yao, Y., Dhanasekaran, S., Li, J., Ngea, G.L.N., Li, B., Zhao, L., Zhang, H. (2022). Controlling black spot of postharvest broccoli by Meyerozyma guilliermondii and its regulation on ROS metabolism of broccoli. Biol. Control, 170, 104938. https://doi.org/10.1016/j.biocontrol.2022.104938
  44. Zhu, J., Zhu, D., Wang, L., Xue, K., Liao, J., Zhang, S. (2022). Effects of compression damage on mechanical behavior and quality attributes of apple fruit. Food Sci. Technol. Res., 28(1), 53–65. https://doi.org/10.3136/fstr.FSTR-D-21-00178

Downloads

Download data is not yet available.

Podobne artykuły

1 2 3 4 5 6 7 8 9 10 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.