Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Genetyczne podstawy cytoplazmatyczno-jądrowej męskiej sterylności (CMS) u roślin oraz jej wykorzystanie w hodowli. Praca przeglądowa

MARZENA WASIAK

Zakład Biochemii i Fizjologii Roślin, Instytut Hodowli i Aklimatyzacji Roślin – Państwowy Instytut Badawczy, Radzików, 05–870 Błonie, Polska
https://orcid.org/0000-0003-4943-3045


Abstrakt

Zjawisko cytoplazmatyczno-jądrowej męskiej sterylności (CMS) u roślin charakteryzuje się upośledzeniem rozwoju pełnowartościowego pyłku. To zaburzenie jest wynikiem niekompatybilności genomu mitochondrialnego i jądrowego. Istnieje wiele hipotez tłumaczących CMS, jednak molekularny mechanizm działania męskiej sterylności i przywracania płodności u większości gatunków roślin uprawnych pozostaje nieznany. Mimo to prace hodowców umożliwiły opracowanie wydajnych systemów CMS, które znalazły zastosowanie w hodowli między innymi zbóż. Zainteresowanie hodowlą heterozyjną wiąże się zarówno z możliwością wykorzystania efektu heterozji (poprzez krzyżowanie formy matecznej i ojcowskiej), jak  i z kontrolą nad materiałem siewnym. Ze względów ekonomicznych hodowla heterozyjna ma –  i należy oczekiwać, że będzie mieć – istotne znaczenie gospodarcze.

Słowa kluczowe:

rośliny, cytoplazmatyczna męska sterylność, mitochondrialne DNA, otwarta ramka odczytu, geny przywracania płodności

Andersen W.R., 1963. Cytoplasmic sterility in hybrids of Lycopersicon esculentum and Solanum penelli. Rep. Tomato Genet. Coop. Rept. 13, 7–8.

Arseniuk E., Oleksiak T., 2013. Stosowanie kwalifikowanego materiału siewnego a efekty produkcji zbóż. W: Zboża wysokiej jakości. Poradnik dla producentów. Warszawa, 1–5.

Balk J., Leaver C.J., 2001. The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13, 1803–1818, https://doi.org/10.1105/TPC.010116.

Balk J., Pilon M., 2011. Ancient and essential: the assembly of iron-sulfur clusters in plants. Trends Plant Sci. 16(4), 218–226, https://doi.org/10.1016/j.tplants.2010.12.006.

Barkan A., Small I., 2014. Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 65, 415–442, https://doi.org/10.1146/annurev-arplant-050213-040159.

Bentolila S., Alfonso A.A., Hanson M.R., 2002. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc. Natl. Acad. Sci. U. S. A. 99(16), 10887-10892, https://doi.org/10.1073/pnas.102301599.

Birchler J.A., Yao H., Chudalayandi S., Vaiman D., Veitia R.A., 2010. Heterosis. Plant Cell, tpc-110, DOI: https://doi.org/10.1105/tpc.110.076133.

Bohra A., Jha U.C., Adhimoolam P., Bisht D., Singh N.P., 2016. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep. 35(5), 967–993, https://doi.org/ 10.1007/s00299-016-1949-3.

Bonen L., 2008. Cis- and trans-splicing of group II introns in plant mitochondria. Mitochondrion 8, 26–34, https://doi.org/10.1016/j.mito.2007.09.005.

Budar F., Pelletier G., 2001. Male sterility in plants: occurrence, determinism, significance and use. Com. Ren. Acad. Sci. Ser. III-Sci. Vie-Life Sci. 324(6), 543–550, https://doi.org/ 10.1016/ S0764-4469(01)01324-5.

Chambers C., Shuai B., 2009. Profiling microRNA expression in Arabidopsis pollen using microRNA array and real-time PCR. BMC Plant Biol. 9(1), 87, https://doi.org/10.1186/1471- 2229-9-87.

Chase C.D., 2007. Cytoplasmic male sterility: a window to the world of plant mitochondrial – nuclear interactions. Trends Genet. 23, 81–90, https://doi.org/10.1016/j.tig.2006.12.004

Chen L., Liu Y.G., 2014. Male Sterility and Fertility Restoration in Crops. Annu. Rev. Plant Biol. 65, 579–606, https://doi.org/10.1146/annurev-arplant-050213-040119.

Chen Z., Zhao N., Li S., Grover C.E., Nie H., Wendel, J.F., Hua, J., 2017. Plant mitochondrial genome evolution and cytoplasmic male sterility. Crit. Rev. Plant Sci. 36(1), 55–69, https://doi.org/10.1080/07352689.2017.1327762.

Cui X., Wise R.P., Schnable P.S., 1996. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 3272(5266), 1334–1336, https://doi.org/10.1126/science.272.5266.1334.

Dewey R.E., Timothy D.H., Levings III C.S., 1991. Chimeric mitochondrial genes expressed in the C male-sterile cytoplasm of maize. Curr. Genet. 20, 475–482, https://doi.org/10.1007/ BF00334775.

Duvick D.N., 1959. The use of cytoplasmic male-sterility in hybrid seed production. Econ. Bot. 13(3), 167–195, https://doi.org/10.1007/BF02860581.

Eckardt N.A., 2006. Cytoplasmic male sterility and fertility restoration. Plant Cell 18(3), 515–517, https://doi.org/10.1105/tpc.106.041830.

Fu D., Xiao M., Hayward A., Fu Y., Liu G., Jiang G., Zhang H., 2014. Utilization of crop heterosis: a review. Euphytica 197(2), 161–173, https://doi.org/10.1007/s10681-014-1103-7

Fujii S., Toriyama K., 2008. Genome Barriers between nuclei and mitochondria exemplified by cytoplasmic male sterility. Plant Cell Physiol. 49(10), 1484–1494, https://doi.org/10.1093/ pcp/pcn102.

Fujii S., Toriyama K., 2009. Suppressed expression of retrograde-regulated male sterility restores pollen fertility in cytoplasmic male sterile rice plants. Proc. Natl. Acad. Sci. U. S. A. 106(23), 9513–9518, https://doi.org/10.1073/pnas.0901860106.

Fukasawa H., 1953. Studies on restoration and substitution of nucleus in Aegilotricum. Appearance of male-sterile durum in substitution crosses. Cytologia 18(2), 167–175, https://doi.org/10.1508/cytologia.18.167.

Gallagher L.J., Betz S.K., Chase C.D., 2002. Mitochondrial RNA editing truncates a chimeric open reading frame associated with S male-sterility in maize. Curr. Genet. 42, 179–184, https://doi.org/10.1007/s00294-002-0344-5.

Geddy R., Brown G.G., 2007. Genes encoding pentatricopeptide repeat (PPR) proteins are not conserved in location in plant genomes and may be subject to diversifying selection. BMC Genomics 8, 130, https://doi.org/10.1186/1471-2164-8-130.

Geiger H.H., Schnell F.W., 1970. Cytoplasmic male sterility in rye (Secale cereale L.). Crop Sci. 10, 590–593, https://doi.org/10.2135/cropsci1970.0011183X001000050043x.

Geiger H.H., Miedaner T., 2009. Rye breeding. Cereals 3, 157–181.

Gillman J.D., Bentolila S., Hanson M.R., 2007. The petunia restorer of fertility protein is part of a large mitochondrial complex that interacts with transcripts of the CMS‐associated locus. Plant J. 49(2), 217–227, https://doi.org/10.1111/j.1365-313X.2006.02953.x.

Gillman J.D., Bentolila S., Hanson M.R., 2009. Cytoplasmic male sterility and fertility restoration in petunia. In: Gerats T., Strommer J. (eds.). Petunia. Springer, New York, 107–129, https://doi.org/10.1007/978-0-387-84796-2.

Gobron N., Waszczak C., Simon M., Hiard S., Boivin S., Charif D., Ducamp A., Wenes E., Budar F., 2013. A cryptic cytoplasmic male sterility unveils a possible gynodioecious past for Arabidopsis thaliana. PLoS One 8(4), e62450, https://doi.org/10.1371/journal.pone.0062450

Góral H., 2001. Mieszańce F1 pszenżyta ozimego z cytoplazm Triticum timopheevi. Biul. IHAR 220, 81–90.

Góral H., 2002. Production of triticale (X Triticosecale Wittm.) hybrid seeds using the sterilizing cytoplasm of Triticum timopheevi. Cereal Res. Commun. 30, 31–38, JSTOR, www.jstor.org/stable/23787234.

Góral H., Stojalowski S., Tyrka M., Wedzony M., 2010. Inheritance of fertility restoration in winter triticale with cytoplasm of Triticum timopheevi. Folia Pom. Univ. Technol. Stetin. Agric., Aliment., Pisc.t Zootech., 13, 11–18.

Gray M.W., Burger G., Lang B.F., 1999. Mitochondrial evolution. Science 283(5407), 1476–1481, https://doi.org/10.1126/science.283.5407.1476.

Grelon M., Budar F., Bonhomme S., Pelletier G., 1994. Ogura cytoplasmic male-sterility (CMS)- +associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol. Gen. Genet. 243, 540–547, https://doi.org/10.1007/BF00284202.

Handa H., 2003. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.), comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucl. Acids Res. 31(20), 5907–5916, https://doi.org/ 10.1093/nar/gkg795.

Hegde R.R., Naik S.S., Halappanavar S.P., 1992. Mechanism of male sterility in Nicotiana tabacum L. Cytologia 57, 167–172, https://doi.org/10.1508/cytologia.57.167.

Hochholdinger F., Hoecker N., 2007. Towards the molecular basis of heterosis. Trends Plant Sci. 12(9), 427–432, https://doi.org/10.1016/j.tplants.2007.08.005.

Horn R., Gupta K.J., Colombo N., 2014. Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion 19, 198–205, https://doi.org/10.1016/j.mito.2014.04.004.

Horvath S.E., Daum G., 2013. Lipids of mitochondria. Prog. Lipid Res. 52(4), 590–614, https://doi.org/10.1016/j.plipres.2013.07.002.

Howad W., Kempken F., 1997. Cell type-specific loss of atp6 RNA editing in cytoplasmic male sterile Sorghum bicolor. Proc. Natl. Acad. Sci. U. S. A. 94, 11090–11095, https://doi.org/ 10.1073/pnas.94.20.11090.

http://www.farmer.pl/produkcja-roslinna/zboza/odmiany-mieszancowe,51310.html [dostęp 07.01.2019].

http://www.tvagro.pl/PL-H23/3/2035/na-czym-polega-hodowla-rzepaku-w-systemie-ogura.html [dostęp 09.01.2019].

https://www.dekalb.pl/rzepak/nasiona-rzepak/cechy-mieszancow-dekalb/mieszance-zrestorowane-wyhodowane-w-systemie-ogura [dostęp 10.01.2019].

Hu J., Huang, W., Huang Q., Qin X., Dan Z., Yao G., Zhu Y., 2013. The mechanism of ORFH79 suppression with the artificial restorer fertility gene Mt‐GRP162. New Phytol. 199(1), 52–58, https://doi.org/10.1111/nph.12310.

Hu J., Yi R., Zhang H., Ding Y., 2013. Nucleo-cytoplasmic interactions affect RNA editing of cox2, atp6 and atp9 in alloplasmic male-sterile rice (Oryza sativa L.) lines. Mitochondrion 13, 87–95, https://doi.org/10.1016/j.mito.2013.01.011.

Itabashi E., Iwata N., Fujii S., Kazama T., Toriyama K., 2011. The fertility restorer gene, Rf2, for Lead Rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein. Plant J. 65, 359–367, https://doi.org/10.1111/j.1365-313X.2010.04427.x.

Ivanov M.K., Dymshits G.M., 2007. Cytoplasmic male sterility and restoration of pollen fertility in higher plants. Russ. J. Genet. 43(4), 354–368, https://doi.org/10.1134/S1022795407040023.

Iwabuchi M., Koizuka N., Fujimoto H., Sakai T., Imamura J., 1999. Identification and expression of the kosena radish (Raphanus sativus cv. Kosena) homologue of the ogura radish CMS-associated gene, orf138. Plant Mol. Biol. 39, 183–188, https://doi.org/ 10.1023/ A:1006198611371.

Jerzak M.A., Mikulski W., 2011. Rynkowa konkurencyjność krajowego nasiennictwa zbóż w świetle konsolidacji spółek hodowli roślin ANR. Zag. Ekon. Rol. (3), 134–142.

Jin Z., Wu L., Cao J., Chen Z., Pei Y., 2013. TinII intron, an enhancer to affect the function of the cytoplasmic male sterility related gene T in Brassica juncea. Sci. China Life Sci. 56(12), 1107–1112, https://doi.org/10.1007/s11427-013-4570-5.

Jing B., Heng S., Tong D., Wan Z., Fu T., Tu J., Shen J., 2011. A male sterility-associated cytotoxic protein ORF288 in Brassica juncea causes aborted pollen development. J. Exp. Bot. 63(3), 1285–1295, https://doi.org/10.1093/jxb/err355.

Jones D.F., Stinson H.T., Khoo U., 1957. Pollen restoring genes. Connecticut Agricultural Experiment Station. CT Agr. Exp. Stu. Bull. Immed. Info. 62, 213–217.

Joppa L.R., McNeal F.H., Welsh J.R., 1966. Pollen and Anther development in cytoplasmic male sterile wheat (Triticum aestivum L.). Crop Sci. 6(3), 296–297, https://doi.org/10.2135/cropsci 1966.0011183X000600030026x.

Kaeppler S., 2012. Heterosis, many genes, many mechanisms-end the search for an undiscovered unifying theory. ISRN Bot. 1–12, https://doi.org/10.5402/2012/682824.

Kang L., Li P., Wang A., Ge X., Li Z., 2017. A novel cytoplasmic male sterility in Brassica napus (inap CMS) with carpelloid stamens via protoplast fusion with Chinese woad. Front. Plant Sci. 8, 529, https://doi.org/10.3389/fpls.2017.00529

Kawanabe T., Ariizumi T., Kawai-Yamada M., Uchimiya H., Toriyama K., 2006. Abolition of the tapetum suicide program ruins microsporogenesis. Plant Cell Physiol. 47, 784–787, https://doi.org/10.1093/pcp/pcj039.

Kim K., Lee Y.P., Lim H., Han T., Sung S.K., Kim S., 2010. Identification of Rfd1, a novel restorer-of-fertility locus for cytoplasmic male-sterility caused by DCGMS cytoplasm and development of simple PCR markers linked to the Rfd1 locus in radish (Raphanus sativus L.). Euphytica 175(1), 79–90, https://doi.org/10.1007/s10681-010-0190-3.

Korth K.L., Kaspi C.I., Siedow J.N., Levings C.S., 1991. URF13, a maize mitochondrial pore-forming protein, is oligomeric and has a mixed orientation in Escherichia coli plasma membranes. Proc. Natl. Acad. Sci. U. S. A. 88, 10865–10869, https://doi.org/10.1073/ pnas.88.23.10865.

Korth K.L., Levings C.S., 1993. Baculovirus expression of themaize mitochondrial protein URF13 confers insecticidal activity in cell cultures and larvae. Proc. Natl. Acad. Sci. U. S. A. 90, 3388–3392, https://doi.org/10.1073/pnas.90.8.3388.

Labudda M., Machczyńska J., Woś H., Bednarek P.T., 2011. Wybrane aspekty postępu biologicznego w hodowli pszenżyta (× Triticosecale WITTM. ex A.CAMUS). Post. Nauk Rol. 63(4), 3–10.

Landgren M., Zetterstrand M., Sundberg E., Glimelius K., 1996. Alloplasmic male-sterile Brassica lines containing B. tournefortii mitochondria express an ORF 3′ of the atp6 gene and a 32 kDa protein. Plant Mol. Biol. 32(5), 879–890, https://doi.org/10.1007/BF00020485.

Laser K.D., Lersten N.R., 1972. Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Bot. Rev. 38(3), 425–454, https://doi.org/10.1007/BF02860010.

Law S.R., Narsai R., Whelan J., 2014. Mitochondrial biogenesis in plants during seed germination. Mitochondrion 19, 214–221, https://doi.org/10.1016/j.mito.2014.04.002.

Leino M., Teixeira R., Landgren M., Glimelius K., 2003. Brassica napus lines with rearranged Arabidopsis mitochondria display CMS and a range of developmental aberrations. Theor. Appl. Genet. 106(7), 1156–1163, https://doi.org/10.1007/s00122-002-1167-y.

Leśniewska J., 2003. Tapetum pylnikowe w aspekcie programowanej śmierci komórki. Kosmos. Probl. Nauk Biol. 52(4), 399–412.

Levings C.S., 1993. Thoughts on cytoplasmic male sterility in cms-T maize. Plant Cell 5, 1285–1290, https://dx.doi.org/10.1105%2Ftpc.5.10.1285.

L'Homme Y., Stahl R.J., Li X.Q., Hameed A., Brown G.G., 1997. Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene. Curr. Genet. 31(4), 325–335, https://doi.org/ 0.1007/s002940050212.

Li S., Wan C., Kong J., Zhang Z., Li Y., Zhu Y., 2004. Programmed cell death during microgenesis in a Honglian CMS line of rice is correlated with oxidative stress in mitochondria. Funct. Plant Biol. 31, 369–376, https://doi.org/10.1071/FP03224.

Li J., Pandeya D., Jo Y.D., Liu W.Y., Kang B.C., 2013. Reduced activity of ATP synthase in mitochondria causes cytoplasmic male sterility in chili pepper. Planta 237(4), 1097–1109, https://doi.org/10.1007/s00425-012-1824-6.

Li Y., Liu T., Duan W., Song X., Shi G., Zhang J., Hou X., 2014. Instability in mitochondrial membranes in Polima cytoplasmic male sterility of Brassica rapa ssp. chinensis. Funct. Integr. Genom. 14(2), 441–451, https://doi.org/10.1007/s10142-014-0368-1.

Liberatore K.L., Dukowic-Schulze S., Miller M.E., Chen C., Kianian S.F. 2016. The role of mitochondria in plant development and stress tolerance. Free Radic. Biol. Med. 100, 238–256, https://doi.org/10.1016/j.freeradbiomed.2016.03.033.

Liu F., Cui X., Horner H.T., Weiner H., Schnable P.S., 2001. Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize. Plant Cell 13, 1063–1078, https://doi.org/10.1105/tpc.13.5.1063.

Luan J., Liu T., Luo W., Liu W., Peng M., Li W., Dai X., Liang M., Chen L., 2013. Mitochondrial DNA genetic polymorphism in thirteen rice cytoplasmic male sterile lines. Plant cell reports 32(4), 545–554, https://doi.org/10.1007/s00299-013-1386-5.

Majewska-Sawka A., Sadoch Z., 2003. Cytoplazmatyczna męska sterylność roślin – mechanizmy biologiczne i molekularne. Kosmos. Probl. Nauk Biol. 4(52), 413–423.

Martin M. V., Distéfano A.M., Bellido A., Córdoba J.P., Soto D., Pagnussat G.C., Zabaleta E., 2014. Role of mitochondria during female gametophyte development and fertilization in A. thaliana. Mitochondrion 19, 350–356, https://doi.org/10.1016/j.mito.2014.01.005 .

Matsuhira H., Kagami H., Kurata M., Kitazaki K., Matsunaga M., Hamaguchi Y., Hagihara E., Ueda M., Harada M., Muramatsu A., Yui-Kurino R., Taguchi K., Tamagake H., Mikami T., Kubo T., 2012. Unusual and Typical Features of a Novel Restorer-of-Fertility Gene of Sugar Beet (Beta vulgaris L.). Genetics 192(4), 1347–1358, https://doi.org/ 10.1534/ genetics. 112.145409

Maunder A.B., Pickett R.C., 1959. The genetic inheritance of cytoplasmic-genetic male sterility in grain sorghum. Agron. J. 51(1), 47–49, https://doi.org/10.2134/agronj1959.00021962005100010016x.

Miedaner T., Glass C., Dreyer F., Wilde P., Wortmann H., Geiger H.H., 2000. Mapping of genes for male-fertility restoration in’Pampa’CMS winter rye (Secale cereale L.). Theor. Appl. Genet. 101(8), 1226–1233, https://doi.org/10.1007/s001220051601.

Millar A.H., Whelan J., Soole K.L., Day D.A., 2011. Organization and regulation of mitochondrial respiration in plants. Annu. Rev. Plant Biol. 62, 79–104, https://doi.org/10.1146/annurev-arplant-042110-103857.

Nadot S., Furness C.A., Sannier J., Penet L., Triki-Teurtroy S., Albert B., Ressayre A., 2008. Phylogenetic comparative analysis of microsporogenesis in angiosperms with a focus on monocots. Am. J. Bot. 95(11), 1426–1436, https://doi.org/10.3732/ajb.0800110.

Nakamura T., Yagi Y., Kobayashi K., 2012. Mechanistic insight into pentatricopeptide repeat proteins as sequence-specific RNA-binding proteins for organellar RNAs in plants. Plant Cell Physiol. 53(7), 1171–1179, https://doi.org/10.1093/pcp/pcs069.

Pranathi K., Viraktamath B.C., Neeraja C.N., Balachandran S.M., Hari Prasad A.S., Koteswara Rao P., Revathi P., Senguttuvel P., Hajira S.K., Balachiranjeevi C.H., Bhaskar Naik S., Abhilash V., Praveen M., Parimala K., Kulkarni S.R., Anila M., Rekha G., Koushik M.B.V.N., Kemparaju B., Madhav M.S., Mangrauthia S.K., Harika G., Dilip T., Kale R.R., Vishnu Prasanth V., Ravindra Babu V., Sundaram R.M., 2016. Development and validation of candidate gene-specific markers for the major fertility restorer genes, Rf4 and Rf3 in rice. Mol. Breed. 36(145), 1–14, https://doi.org/10.1007/s11032-016-0566-8.

Raghavan V., 1997. Molecular embryology of flowering plants. Gametogenesis. Cambridge University Press, USA.

Raghavan V., 2000. Developmental biology of flowering plants. microsporogenesis and formation of the male gametophyte. Springer-Verlag, New York, 186–215, https://doi.org/10.1007/978-1-4612-1234-8.

Rébeillé F., Alban C., Bourguignon J., Ravanel S., Douce R., 2007. The role of plant mitochondria in the biosynthesis of coenzymes. Photosynth. Res. 92(2), 149–162, https://doi.org/ 10.1007/s11120-007-9167-z.

Rhoads D.M., Levings C.S., Siedow J.N., 1995. URF13, a ligand-gated, pore-forming receptor for T-toxin in the inner membrane ofcms-T mitochondria. J. Bioenerg. Biomembr. 27(4), 437– –445, https://doi.org/10.1007/BF02110006.

Rohrbach U., 1965. Beitrage zum Problem der Pollensterilitat bei Beta vulgaris L. Untersuchungen uber die Ontogenese des Phanotyps. Zeitschrift fur Pflanzenzuchtung 53(2), 105–124.

Rose R.J., Sheahan M.B., 2001. Plant mitochondria. eLS, https://doi.org/10.1002/9780470015902.a0001 680.pub2.

Rutko T., 2011. Uprawa rzepaku ozimego, rzepak – zasady uprawy – zdrowa żywność. Poradnik dla producentów. Instytut Agrofizyki PAN, Lublin.

Sakata T., Higashitani A., 2008. Male sterility accompanied with abnormal anther development in plants, genes and environmental stresses with special reference to high temperature injury. Int. J. Plant. Dev. Biol. 2, 42–51.

Sarria R., Lyznik A., Vallejos E.C., Mackenzie S.A., 1998. A cytoplasmic male sterility-associated mitochondrial peptide in common bean is post-translationally regulated. Plant Cell 10(7), 1217–1228, https://doi.org/10.1105/tpc.10.7.1217.

Schmitz-Linneweber C., Small I., 2008. Pentatricopeptide repeat proteins, a socket set for organelle gene expression. Trends Plant Sci. 13(12), 663–670, https://doi.org/10.1016/ j.tplants.2008.10.001.

Schnable P.S., Wise R.P., 1998. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 3(5), 175–180, https://doi.org/10.1016/S1360-1385(98)01235-7.

Scoles G.J., Evans L.E., 1979. Pollen development in male-fertile and cytoplasmic male-sterile rye. Can. J. Bot. 57(24), 2782–2790, https://doi.org/10.1139/b79-330.

Sharma B., Shinada T., Kifuji Y., Kitashiba H., Nishio T., 2012. Molecular mapping of a male fertility restorer locus of Brassica oleracea using expressed sequence tag-based single nucleotide polymorphism markers and analysis of a syntenic region in Arabidopsis thaliana for identification of genes encoding pentatricopeptide repeat proteins. Mol. Breed. 30(4), 1781– –1792, https://doi.org/10.1007/s11032-012-9761-4.

Shi S., Ding D., Mei S., Wang J., 2010. A comparative light and electron microscopic analysis of microspore and tapetum development in fertile and cytoplasmic male sterile radish. Protoplasma 241(1–4), 37–49, https://doi.org/10.1007/s00709-009-0100-5.

Skibbe D.S., Liu F., Wen T.J., Yandeau M.D., Cui X., Cao J., Simmons C.R., Schnable P.S., 2002. Characterization of the aldehyde dehydrogenase gene families of Zea mays and Arabidopsis. Plant Mol. Biol. 48(5–6), 751–764, https://doi.org/10.1023/A:1014870429630.

Sloan D.B., Alverson A.J., Chuckalovcak J.P., Wu M., McCauley D.E., Palmer J.D., Taylor D.R., 2012. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol. 10(1), 1–17, https://doi.org/10. 1371/ journal.pbio.1001241.

Smyth D.R., Bowman J.L., Meyerowitz E.M., 1990. Early flower development in Arabidopsis. Plant Cell 2(8), 755–767, https://doi.org/10.1105/tpc.2.8.755.

Sofi P.A., Rather A.G., Wani S.A., 2007. Genetic and molecular basis of cytoplasmic male sterility in maize. Commun. Biometry Crop Sci. 2(1), 49–60.

Spassova M., John H., Nijkamp J., Hille J., 1993. Cytoplasmic male sterility in higher plants. Biotechnol. Biotechnol. Equip. 7(4), 40–51, https://doi.org/10.1080/1310 2818.1993. 10818705

Stasolla C., Riko Katahira R., Trevor A., Thorpe T.A., Ashihara H., 2003. Purine and pyrimidine nucleotide metabolism in higher plants. J. Plant Physiol. 160, 1271–1295, https://doi.org/ 10.1078/0176-1617-01169. Suzuki H., Yu J., Ness S., O'Connell M., Zhang J., 2013. RNA editing events in mitochondrial genes by ultra-deep sequencing methods, a comparison of cytoplasmic male sterile, fertile and restored genotypes in cotton. Mol. Genet. Genom. 288, 445–457, https://doi.org/ 10.1007/s00438-013-0764-6

Święcicki W. K., Surma M., Koziara W., Skrzypczak G., Szukała J., Bartkowiak-Broda I., Zimny J., Banaszak Z., Marciniak K., 2011. Nowoczesne technologie w produkcji roślinnej – przyjazne dla człowieka i środowiska. Pol. J. Agron. 7, 102–112.

Takenaka, M., Verbitskiy D., Zehrmann A., Härtel B., Bayer-Császár E., Glass F., Brennicke A., 2014. RNA editing in plant mitochondria-connecting RNA target sequences and acting proteins. Mitochondrion 19(B), 191–197, https://doi.org/10.1016/j.mito.2014.04.005.

Tan Y., Xu X., Wang C., Cheng G., Li S., Liu X., 2015. Molecular characterization and application of a novel cytoplasmic male sterility-associated mitochondrial sequence in rice. BMC Genet. 16(1), 45, https://doi.org/10.1186/s12863-015-0205-0.

Tang H., Zheng X., Li C., Xie X., Chen Y., Chen L., Guo J., 2017. Multi-step formation, evolution, and functionalization of new cytoplasmic male sterility genes in the plant mitochondrial genomes. Cell Res. 27(1), 130–146, https://doi.org/10.1038/cr.2016.115.

Touzet P., Meyer E.H., 2014. Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion 19, 166–171, https://doi.org/10.1016/j.mito.2014.04.009.

Tsaftaris S. A., 1995. Molecular aspects of heterosis in plants. Physiol. Plant. 94(2), 362–370, https://doi.org/10.1111/j.1399-3054.1995.tb05324.x.

Uyttewaal M., Arnal N., Quadrado M., Martin-Canadell A., Vrielynck N., Hiard S., Mireau H., 2008. Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility. Plant Cell 20(12), 3331–3345, https://doi.org/10.1105/tpc.107.057208.

Vinod K.K., 2005. Cytoplasmic genetic male sterility in plants. A molecular prospective. Proceedings of the training programme on ”Advances and Accomplishments in Heterosis Breeding”. Tamil Nadu Agricultural University, Coimbotore, 147–162.

Wang Z. W., Wang C., Gao L., Mei S. Y., Zhou Y., Xiang C. P., Wang T., 2013. Heterozygous alleles restore male fertility to cytoplasmic male-sterile radish (Raphanus sativus L.), a case of overdominance. J. Exp. Bot. 64(7), 2041–2048, https://doi.org/10.1093/jxb/ert065.

Ward B.L., Anderson R.S., Bendich A.J., 1981. The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25(3), 793–803, https://doi.org/10.1016/0092- -8674(81)90187-2.

Warmke H.E., Lee S-L.J., 1977. Mitochondrial degeneration in Texas cytoplasmic male-sterile corn anthers. J. Hered. 68, 213–222, https://doi.org/10.1093/oxfordjournals.jhered.a108817.

Wei L., Yan Z. X., Ding Y., 2008. Mitochondrial RNA editing of F0-ATPase subunit 9 gene (atp9) transcripts of Yunnan purple rice cytoplasmic male sterile line and its maintainer line. Acta Physiol. Planta. 30, 657–662, https://doi.org/10.1007/s11738-008-0162-6.

Wei L.Q., Yan L.F., Wang T., 2011. Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biol. 12, R53, https://doi.org/10.1186/gb-2011-12-6-r53.

Winiarczyk K., 1999. Męska i żeńska sterylność u roślin kwiatowych. Wiad. Bot. 43(1/2), 37–45.

Yamagishi H., Bhat S.R., 2014. Cytoplasmic male sterility in Brassicaceae crops. Breed. Sci. 64(1), 38–47, https://doi.org/10.1270/jsbbs.64.38.

Yan J., Tian H., Wang S., Shao J., Zheng Y., Zhang H., Ding Y., 2014. Pollen developmental defects in ZD-CMS rice line explored by cytological, molecular and proteomic approaches. J. Proteom. 108, 110–123, https://doi.org/10.1016/j.jprot.2014.05.014.

Yang J., Liu X., Xu B., Zhao N., Yang X., Zhan, M., 2013. Identification of miRNAs and their targets using high-throughput sequencing and degradome analysis in cytoplasmic male-sterile and its maintainer fertile lines of Brassica juncea. BMC Genom. 14, 9, https://doi.org/10.1186/1471-2164-14-9.

Yang P., Han J., Huang J., 2014. Transcriptome sequencing and de novo analysis of cytoplasmic male sterility and maintenance in JA-CMS cotton. PloS One 9(11), e112320, https://doi.org/ 10.1371/journal.pone.0112320.

Yurina N., Odintsova M., 2011. Plant organelles-to-nucleus retrograde signaling. Abiotic stress response in plants-physiological, biochemical and genetic perspectives. InTech 3, 55–74.

Pobierz

Opublikowane
30-04-2019



MARZENA WASIAK 
Zakład Biochemii i Fizjologii Roślin, Instytut Hodowli i Aklimatyzacji Roślin – Państwowy Instytut Badawczy, Radzików, 05–870 Błonie, Polska https://orcid.org/0000-0003-4943-3045



Licencja

Artykuły są udostępniane na zasadach CC BY 4.0 (do 2020 r. na zasadach CC BY-NC-ND 4.0)..
Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej i nie jest rozpatrywany do publikacji gdzie indziej.

Autor podpisuje oświadczenie o oryginalności dzieła, wkładzie poszczególnych osób i źródle finansowania.

 

Czasopismo Agronomy Science przyjęło politykę samoarchiwizacji nazwaną przez bazę Sherpa Romeo drogą niebieską. Od 2021 r. autorzy mogą samoarchiwizować postprinty artykułów oraz wersje wydawnicze (zgodnie z licencją CC BY). Artykuły z lat wcześniejszych (udostępniane na licencji CC BY-NC-ND 4.0) mogą być samoarchiwizowane tylko w wersji wydawniczej.