Kamila Borowiec

Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna 8, 20-704 Lublin

Dominik Szwajgier

Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland


Bilberry fruit is a valuable source of many antioxidant and anticholinesterase agents. Thus, the aim of the present study was to determine the effect of heat treatment combined with enzyme preparations on the antioxidant and anticholinesterase activity of bilberry juices. Each bilberry juice efficiently ‘scavenged’ DPPH and ABTS radicals. The highest ability to remove DPPH radicals was found in pre-heated (80–90°C, 5 min) and non-heated (only 50–55°C, 2 h) juices obtained using Pectinex BE XXL. The pre-heating treatment caused an increase in the anti-acetylcholinesterase activity compared to non-heated juices, with the highest elevation (p < 0.05) recorded for juice produced using Panzym BE XXL. Similarly, the heat pretreatment caused an increase in the anti-butyrylcholinesterase activity in bilberry juices. The combined application of pre-heating and enzyme preparations during juice processing resulted in an increase in the antioxidant and anticholinesterase activities of the end juices.


ABTS, AChE, BChE, DPPH, inhibition, temperature

Aaby, K., Grimmer, S., Holtung, L. (2013). Extraction of phenolic compounds from bilberry (Vaccinium myrtillus L.) press residue: Effects on phenolic composition and cell proliferation. LWT-Food Sci. Technol., 54, 257–264. DOI: 10.1016/j.lwt.2013.05.031

Ancillotti, C., Ciofi, L., Pucci, D., Sagona, E., Giordani, E., Biricolti, S., Gori, M., Petrucci, W.A., Giardi, F., Bartoletti, R., Chiuminatto, U., Orlandini, S., Mosti, S., Del Bubba, M. (2016). Polyphenolic profiles and antioxidant and antiradical activity of Italian berries from Vaccinium myrtillus L. and Vaccinium uliginosum L. subsp. gaultherioides (Bigelow) S.B. Young. Food Chem., 204, 176–184. DOI: 10.1016/j.foodchem.2016.02.106

Ancillotti, C., Ciofi, L., Rossini, D., Chiuminatto, U., Stahl-Zeng, J., Orlandini, S., Furlanetto, S., Del Bubba, M. (2017). Liquid chromatographic/electrospray ionization quadrupole/time of flight tandem mass spectrometric study of polyphenolic composition of different Vaccinium berry species and their comparative evaluation. Anal. Bioanal. Chem., 409, 1347–1368. DOI: 10.1007/s00216-016-0067-y

Ávila-Escalante, M.L., Coop-Gamas, F., Cervantes-Rodríguez, M., Méndez-Iturbide, D., Aranda-González, I.I. (2020). The effect of diet on oxidative stress and metabolic diseases-clinically controlled trials. J. Food Biochem., 44, e13191. DOI: 10.1111/jfbc.13191

Borowiec, K., Szwajgier, D., Targoński, Z., Demchuk, O.M., Cybulska, J., Czernecki, T., Malik, A. (2014). Cholinesterase inhibitors isolated from bilberry fruit. J. Funct. Foods, 11, 313–321. DOI: 10.1016/j.jff.2014.10.008

Borowiec, K., Matysek, M., Szwajgier, D., Biała, G., Kruk-Słomka, M., Szalak, R, Ziętek, J., Arciszewski, M.B, Targoński, Z. (2019). The influence of bilberry fruit on memory and the expression of parvalbumin in the rat hippocampus. Pol. J. Vet. Sci., 22, 481–487. DOI: 10.24425/pjvs.2019.129973

Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. Lebensm.-Wiss. Technol., 28, 25–30. DOI: 10.1016/S0023-6438(95)80008-5

Brasanac-Vukanovic, S., Mutic, J., Stankovic, D.M., Arsic, I., Blagojevic, N., Vukasinovic-Pesic, V., Tadic, V.M. (2018). Wild bilberry (Vaccinium myrtillus L., Ericaceae) from Montenegro as a source of antioxidants for use in the production of nutraceuticals. Molecules, 23, E1864. DOI: 10.3390/molecules23081864

Buchert, J., Koponen, J.M., Suutarinen, M., Mustranta, A., Lille, M., Törröonen, R., Poutanen, K. (2005). Effect of enzyme-aided pressing on anthocyanin yield and profiles in bilberry and blackcurrant juices. J. Sci. Food Agric., 85, 2548–2556. DOI: 10.1002/jsfa.2284

Castellani, R.J., Rolston, R.K., Smith, M.A. (2010). Alzheimer disease. Dis. Mon., 56, 484–546. DOI: 10.1016/j.disamonth.2010.06.001

Celik, F., Bozhuyuk, M.R., Ercisli, S., Gundogdu, M. (2018). Physicochemical and bioactive characteristics of wild grown bilberry (Vaccinium myrtillus L.) genotypes from Northeastern Turkey. Not. Bot. Horti Agrobot., 46, 128–133. DOI: 10.15835/nbha46110842

Colak, A.M., Kupe, M., Bozhuyuk, M.R., Ercisli, S., Gundogdu, M. (2018). Identifizierung einiger Fruchtmerkmale von Akzessionen der Wildheidelbeere (Vaccinium myrtillus L.) aus Ostanatolien [Identification of some fruit characteristics in wild bilberry (Vaccinium myrtillus L.) accessions from Eastern Anatolia]. Gesunde Pflanz., 70, 31–33. DOI: 10.1007/s10343-017-0410-z

Di Meo, F., Valentino, A., Petillo, O., Peluso, G., Filosa, S., Crispi, S. (2020). Bioactive polyphenols and neuromodulation: Molecular mechanisms in neurodegeneration. Int. J. Mol. Sci., 21, 2564. DOI: 10.3390/ijms21072564

Dinkova, R., Heffels, P., Shikov, V., Weber, F., Schieber, A., Mihalev, K. (2014). Effect of enzyme-assisted extraction on the chilled storage stability of bilberry (Vaccinium myrtillus L.) anthocyanins in skin extracts and freshly pressed juices. Food Res. Int., 65, 35–41. DOI: 10.1016/j.foodres.2014.05.066

Durazzo, A., Lucarini, M., Novellino, E., Daliu, P., Santini, A. (2019). Fruit-based juices: Focus on antioxidant properties-study approach and update. Phytother. Res., 33, 1754–1769. DOI: 10.1002/ptr.6380

Ellman, G.L., Lourtney, D.K., Andres, V., Gmelin, G. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7, 88–95. DOI: 10.1016/0006-2952(61)90145-9

Holtung, L., Grimmer, S., Aaby, K. (2011). Effect of processing of black currant press-residue on polyphenol composition and cell proliferation. J. Agric. Food Chem., 59, 3632e3640. DOI: 10.1021/jf104427r

Igual, M., García-Martínez, E., Camacho, M.M., Martínez-Navarrete, N. (2010). Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chem., 118, 291–299. DOI: 10.1016/j.foodchem.2009.04.118

Igual, M., García-Martínez, E., Camacho, M.M., Martínez-Navarrete, N. (2011). Changes in flavonoid content of grapefruit juice caused by thermal treatment and storage. Innov. Food Sci. Emerging Technol., 12, 153–162. DOI: 10.1016/j.ifset.2010.12.010

Kechinski, C.P., Guimarães, P.V.R., Noreña, C.P.Z., Tessaro, I.C., Marczak, L.D.F. (2010). Degradation kinetics of anthocyanin in blueberry juice during thermal treatment. J. Food Sci., 75, C173–C176. DOI: 10.1111/j.1750-3841.2009.01479.x

Koponen, J.M., Buchert, J., Poutanen, K.S., Törrönen, A.R. (2008a). Effect of pectinolytic juice production on the extractability and fate of bilberry and black currant anthocyanins. Eur. Food Res. Technol., 227, 485–494. DOI: 10.1007/s00217-007-0745-2

Koponen, J.M., Happonen, A.M., Auriola, S., Kontkanen, H., Buchert, J., Poutanen, K.S., Törrönen, A.R. (2008b). Characterization and fate of black currant and bilberry flavonols in enzyme-aided processing. J. Agric. Food Chem., 56, 3136–3144. DOI: 10.1021/jf703676m

Kowalczewski, P.Ł., Olejnik, A., Białas, W., Kubiak, P., Siger, A., Nowicki, M., Lewandowicz, G. (2019). Effect of thermal processing on antioxidant activity and cytotoxicity of waste potato juice. Open Life Sci., 14, 150–157. DOI: 10.1515/biol-2019-0017

Landbo, A.K., Meyer, A.S. (2001). Enzyme-assisted extraction of antioxidative phenols from black currant juice press residues (Ribes nigrum). J. Agric. Food Chem., 49, 3169–3177. DOI: 10.1021/jf001443p

Landbo, A.K., Meyer, A.S. (2004). Effects of different enzymatic treatments on enhancement of anthocyanins and other phenolics in black currant juice. Innovative Food Sci. Emerging Technol., 5, 503–513. DOI: 10.1016/j.ifset.2004.08.003

Masson, P., Froment, M.T., Bartels, C.F., Lockridge, O. (1996). Asp70 in the peripheral anionic site of human butyrylcholinesterase. Eur. J. Biochem., 235, 36–48. DOI: 10.1111/j.1432-1033.1996.00036.x

Mennah‐Govela, Y.A., Bornhorst, G.M. (2017). Fresh‐squeezed orange juice properties before and during in vitro digestion as influenced by orange variety and processing method. J. Food Sci., 82, 2438–2447. DOI: 10.1111/1750-3841.13842

Miljković, V.M., Nikolić, G.S., Zvezdanović, J., Mihajlov-Krstev, T., Arsić, B.B., Miljković, M.N. (2018). Phenolic profile, mineral content and antibacterial activity of the methanol extract of Vaccinium myrtillus L. Not. Bot. Horti Agrobot., 46, 122–127. DOI: 10.15835/nbha46110966

Miller, N.J., Rice-Evans, C., Davies, M.J., Gopinathan, V., Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci., 84, 407–412. DOI: 10.1042/cs0840407

Nandita, H., Manohar, M., Gowda, D.V. (2020). Recent review on oxidative stress, cellular senescence and age-associated diseases. Int. J. Res. Pharm. Sci., 11, 1331–1342. DOI: 10.26452/ijrps.v11i2.1990

Ochmian, I., Oszmiański, J., Skupień, K. (2009). Chemical composition, phenolics, and firmness of small black fruits. J. Appl. Bot. Food Qual., 83, 64–69.

Prior, R.L., Cao, G., Martin, A., Sofic, E., McEwen, J., O’Brien, C., Lischner, N., Ehlenfeldt, M., Kalt, W., Krewer, G., Mainland, C.M. (1998). Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J. Agric. Food Chem., 46, 2686–2693. DOI: 10.1021/jf980145d

Puupponen-Pimiä, R., Nohynek, L., Ammann, S., Oksman-Caldentey, K.M., Buchert, J. (2008). Enzyme-assisted processing increases antimicrobial and antioxidant activity of bilberry. J. Agric. Food Chem., 56, 681–688. DOI: 10.1021/jf072001h

Ramirez, M.R., Izquierdo, I., do Carmo Bassols Raseira, M., Zuanazzi, J.Â., Barros, D., Henriques, A.T. (2005). Effect of lyophilised Vaccinium berries on memory, anxiety and locomotion in adult rats. Pharmacol. Res., 52, 457–462. DOI: 10.1016/j.phrs.2005.07.003

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cationdecolorization assay. Free Radic. Biol. Med., 26, 1231–1237.

Rhee, I.K., van Rijn, R.M., Verpoorte, R. (2003). Qualitative determination of false-positive effects in the acetylcholinesterase assay using Thin Layer Chromatography. Phytochem. Anal., 14, 127–131. DOI: 10.1002/pca.675

Riihinen, K., Jaakola, L., Kärenlampi, S., Hohtola, A. (2008). Organ-specific distribution of phenolic compounds in bilberry (Vaccinium myrtillus) and ‘northblue’ blueberry (Vaccinium corymbosum × V. angustifolium). Food Chem., 110, 156–160. DOI: 10.1016/j.foodchem.2008.01.057

Rouanet, J.-M., Décordé, K., Rio, D.D., Auger, C., Borges, G., Cristol, J.-P., Lean, M.E.J., Crozier, A. (2010). Berry juices, teas, antioxidants and the prevention of atherosclerosis in hamsters. Food Chem., 118, 266–271. DOI: 10.1016/j.foodchem.2009.04.116

Sandri, I.G., Lorenzoni, C.M.T., Fontana, R.C., da Silveira, M.M. (2013). Use of pectinases produced by a new strain of Aspergillus niger for the enzymatic treatment of apple and blueberry juice. LWT-Food Sci. Technol., 51, 469–475. DOI: 10.1016/j.lwt.2012.10.015

Santini, A., Novellino, E. (2014). Nutraceuticals: Beyond the diet before the drugs. Curr. Bioact. Compd. 10, 1–12. DOI: 10.2174/157340721001140724145924

Senica, M., Stampar, F., Veberic, R., Mikulic-Petkovsek, M. (2016). Processed elderberry (Sambucus nigra L.) products: A beneficial or harmful food alternative? LWT-Food Sci. Technol., 72, 182–188. DOI: 10.1016/j.lwt.2016.04.056

Slatnar, A., Jakopic, J., Stampar, F., Veberic, R., Jamnik, P. (2012). The Effect of bioactive compounds on in vitro and in vivo antioxidant activity of different berry juices. PLoS ONE, 7, e47880. DOI: 10.1371/journal.pone.0047880

Szajdek, A., Borowska, E.J., Czaplicki, S. (2009). Effect of bilberry mash treatment on the content of some biologically active compounds and the antioxidant activity of juices. Acta Aliment., 38, 281–292. DOI: 10.1556/AAlim.38.2009.3.2

Szwajgier, D. (2015). Anticholinesterase activity of selected phenolic acids and flavonoids – Interaction testing in model solutions. Ann. Agr. Env. Med., 22, 690–694. DOI: 10.5604/12321966.1185777

Szwajgier, D., Baranowska-Wójcik, E., Borowiec, K. (2018). Phenolic acids exert anticholinesterase and cognition-improving effects. Curr. Alzheimer Res., 15, 531–543. DOI: 10.2174/1567205014666171128102557

Szwajgier, D., Borowiec, K. (2012). Phenolic acids from malt are efficient acetylcholinesterase and butyrylcholinesterase inhibitors. J. Inst. Brew., 118, 40–48. DOI: 10.1002/jib.5

Talavéra, S., Felgines, C., Texier, O., Besson, C., Mazur, A., Lamaison, J.-L., Rémésy, C. (2006). Bioavailability of a bilberry anthocyanin extract and its impact on plasma antioxidant capacity in rats. J. Sci. Food Agric., 86, 90–97. DOI: 10.1002/jsfa.2327

Wang, W.-D., Xu, S.-Y. (2007). Degradation kinetics of anthocyanins in a blackberry juice and concentrate. J. Food Engineer., 82, 271–275. DOI: 10.1016/j.jfoodeng.2007.01.018

Vepsäläinen, S., Koivisto, H., Pekkarinen, E., Mäkinen, P., Dobson, G., McDougall, G.J., Stewart, D., Haapasalo, A., Karjalainen, R.O., Tanila, H., Hiltunen, M. (2013). Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer’s disease. J. Nutr. Biochem., 24, 360–370. DOI: 10.1016/j.jnutbio.2012.07.006

Yamakawa, M.Y., Uchino, K., Watanabe, Y., Adachi, T., Nakanishi, M., Ichino, H., Hongo, K., Mizobata, T., Kobayashi, S., Nakashima, K., Kawata, Y. (2016). Anthocyanin suppresses the toxicity of Aβ deposits through diversion of molecular forms in in vitro and in vivo models of Alzheimer’s disease. Nutr. Neurosci., 19, 32–42. DOI: 10.1179/1476830515Y.0000000042



Kamila Borowiec 
Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna 8, 20-704 Lublin https://orcid.org/0000-0001-6795-8713
Dominik Szwajgier 
Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland https://orcid.org/0000-0002-2285-0669



Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.


Most read articles by the same author(s)