THE EFFECT OF FLURIDONE ON ACCUMULATION OF CAROTENOIDS, FLAVONOIDS AND PHENOLIC ACIDS IN RIPENING TOMATO FRUIT


Abstract

We examined the response of maturing tomato fruit exposed for 7 days to fluridone (1-methyl-3-phenyl-5-[3-trifluoromethyl(phenyl)]-4(1H)-pyridinone). Fluridone was applied in lanolin paste in the form of a 2–3 mm wide strip from the top to the base of the fruit. As a control, a similar stripe of lanolin was applied in the same way on the opposite side of the same fruit. The content of major carotenoids, as well as flavonoids, and free and bound phenolic acids were determined using a HPLC and HPLC-MS-MS methods. Fluridone almost completely blocked the biosynthesis of lycopene and substantial declined content of ß-carotene and lutein in the tomato fruit. The fluridone caused a decreased content of quercetin, rutin and naringenin, and increased level of epicatechin. The herbicide did not affect the content of p-coumaric acid, but reduced the level of caffeic acid, both free and ester form, and declined the content of free ferulic and chlorogenic acids. Changes in phenolics composition observed for the first time indicate that fluridone interferes with the biosynthesis of further products of the metabolism of p-coumaric acid, both flavonoids and phenolic acids.


Keywords

fluridone; tomato fruit; ripening; carotenoid; phenolic acid; flavonoid

Alexander, L., Grierson, D. (2002). Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J. Exp. Bot., 53, 2039–2055. DOI: 10.1093/jxb/erf072
Barros, L., Duenas, M., Pinela, J., Carvalho, A.M., Buelga, C.S., Ferreira, I.C.F.R. (2012). Characterization and quantification of phenolic compounds in four tomato (Lycopersicon esculentum L.) farmers’ varieties in Northeastern Portugal home gardens. Plant Foods Hum. Nutr., 67, 229–234. DOI: 10.1007/s11130-012-0307-z
Barry, C.S., Giovannoni, J.J. (2007). Ethylene and fruit ripening. J. Plant Growth Regul. 26, 143–159. DOI: 10.1007/s00344-007-9002-y
Bartels, P.G., Watson, C.W. (1978). Inhibition of carotenoid synthesis by fluridone and norflurazon. Weed Sci., 26, 198–203.
Bilalis, D., Krokida, M., Roussis, I., Papastylianou, P., Travlos, I., Cheimona, N., Dede, A. (2018). Effects of organic and inorganic fertilization on yield and quality of processing tomato (Lycopersicon esculentum Mill.). Folia Hortic., 30(2), 321–332. DOI: 10.2478/fhort-2018-0027
Bovy, A., de Vos, R., Kemper, M., Schijlen, E., Almenar Pertejo, M., Muir, S., Collins, G., Robinson, S.,Verhoeyen, M., Hughes, S., Santos-Buelga, C., van Tunen, A. (2002). High-flavonol tomatoes resulting from heterologous expression of the maize transcription factor gene LC and C1. Plant Cell, 14, 2509–2526. DOI: 10.1105/tpc.004218
Carrillo-Lopez, A., Yahia, E. (2013). HPLC-DAD-ESI-MS analysis of phenolic compounds during ripening in exocarp and mesocarp of tomato fruit. J. Food Sci., 78, C1839–1844.
Choi, S.H., Kim, D.-S., Kim, D.-S., Kozukue, N., Kim, H.-J., Nishitani, Y., Mizuno, M., Levin, C.E., Friedman, M. (2014). Protein, free amino acid, phenolic, ß-carotene, and lycopene content, and antioxidative and cancer cell inhibitory effects of 12 greenhouse-grown commercial cherry tomato varieties. J. Food Comp. Anal., 34, 115–127. DOI: 10.2478/prolas-2018-0014
Czaplicki, S., Tańska, M., Konopka, I. (2016). Sea-buckthorn oil in vegetable oils stabilization. Ital. J. Food Sci., 28, 412–425. DOI: 10.14674/1120-1770/ijfs.v252
Fraser, P.D., Bramley, P.M. (2004). The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res., 43, 228–265. DOI:10.1016/j.plipres.2003.10.002
George, S., Tourniaire, F., Gautier, H., Goupy, P., Rock, E., Caris-Veyrat, C. (2011). Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chem., 124, 1603–1611. DOI: 10.1016/j.foodchem.2010.08.024
Gapper, N.E., McQuinn, R.P., Giovannomi, J.J. (2013). Molecular and genetic regulation of fruit ripening. Plant Mol. Biol., 82, 575–591. DOI: 10.1007/s11103-013-0050-3
Giorio, G., Yildirim, A., Stigliani, A.L., D’Ambrosio, C. (2013). Elevation of lutein content in tomato: a biochemical tug-of-war between lycopene cyclases. Metab. Eng., 20, 167–176. DOI:10.1016/j.ymben.2013.10.007
Gomez-Romero, M., Segura-Carretero, A., Fernandez-Gutierrez, A. (2010). Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit. Phytochemistry, 71, 1848–1864. DOI: 10.1016/j.phytochem.2010.08.002
Góraj-Koniarska, J., Saniewski, M., Kosson, R., Wiczkowski, W., Horbowicz, M. (2017). Effect of fluridone on some physiological and qualitative features of ripening tomato fruit. Acta Biol. Cracov. Bot., 59/2, 41–49. DOI: 10.1515/abcsb-2017-0012
Hoffman, N.E., Yang, S.F. (1980). Changes of 1-aminicyclopropane-1-carboxylic acid content in ripening fruits in relation to their ethylene production rates. J. Am. Soc. Hortic. Sci., 105, 492–495.
Jamil, M., Charnikhova, T., Verstappen, F., Bouwmeester, H. (2010). Carotenoides inhibitors reduce strigolactone production and Striga hermonthica infection in rice. Arch. Biochem. Biophys., 504, 123–131. DOI: 10.1016/j.abb.2010.08.005
Jimenez, A., Creissen, G., Kular, B., Firmin, J., Robinson, S., Verhoeyen, M., Mullineaux, P. (2002). Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta, 214, 751–758. DOI: 10.1007/s004250100667
Le Gal, G., Dupont, M.S., Mellon, F.A., Davis, A.L., Collins, G.J., Verhoeyen, M.E., Colquhoun, I.J. (2003). Characterization and content of flavonoids glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J. Agric. Food Chem., 51, 2348–2446. DOI: 10.1021/jf025995e
Liu, L., Shao, Z., Zhang, M., Wang, Q. (2015). Regulation of carotenoid metabolism in tomato. Mol. Plant., 8, 28–39. DOI: 10.1016/j.molp.2014.11.006
Martinez-Valverde, I., Periago, M.J., Provan, G., Chesson, A. (2002). Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicon esculentum). J. Sci. Food Agric., 82, 323–330. DOI: 10.1002/jsfa.1035
Moise, A.R., Al-Babili, S., Wurtzel, E.T. (2014). Mechanistic aspects of carotenoid biosynthesis. Chem. Rev., 114, 164−193. DOI:10.1021/cr400106y
Mondal, K., Sharma, N.S., Malhotra, S.P., Dhawan, K., Singh, R. (2004). Antioxidant systems in ripening tomato fruits. Biol. Plant., 48, 49–53. DOI: 10.1023/B:BIOP.0000024274.43874.5b
Muir, S.R., Collins, G.J., Robinson, S., Hughes, S., Bovy, S., De Vos, C.H., van Tunen, A.J., Verhoeyen, M.E. (2001). Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat. Biotechnol., 19, 470–474.
Rasmussen, R.D., Hole, D., Hess, J.R., Carman, J.G. (1997). Wheat kernel dormancy and abscisic acid level following exposure to fluridone. J. Plant Physiol., 150, 440–445. DOI: 10.1016/S0176-1617(97)80095-8
Sabijon, J., Sudaria, M. (2018). Effect of vermicompost amendment and nitrogen levels on soil characteristics and growth and yield of tomato (Solanum lycopersicum cv. Diamante max). Int. J. Agric. Life Sci., 2(2), 145–153.
Slimestad, R., Verheul, M. (2009). Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) cultivars. J. Sci. Food Agric., 89, 1255–1270. DOI: 10.1002/jsfa.3605
Stewart, A.J., Bozonnet, S., Mullen, W., Jenkins, G.I., Lean, M.E., Crozier, A. (2000). Occurrence of flavonols in tomatoes and tomato-based products. J. Agric. Food Chem., 48, 2663–2669.
Su, L., Diretto, G., Purgatto, E., Danoun, S., Zouine, M., Li, Z., Roustan, J.-P., Bouzayen, M., Giuliano, G., Chervin, C. (2015). Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. BMC Plant Biol., 15, 114. DOI: 10.1186/s12870-015-0495-4
Weidner, S., Amarowicz, R., Karamać, M., Frączek, E. (2000). Changes in endogenous phenolic acids during development of Secale cereale caryopses and after dehydration treatment of unripe rye grains. Plant Physiol. Biochem., 38, 595–602. DOI: 10.1016/S0981-9428(00)00774-9
Zanfini, A., Franchi, G.G., Massarelli, P., Corbini, G., Dreassi, E. (2017). Phenolic compounds, carotenoids and antioxidant activity in five tomato (Lycopersicon esculentum Mill.) cultivars. Ital. J. Food Sci., 29, 90–99. DOI: 10.14674/1120-1770/ijfs.v316
Zhang, Y., De Stefano, R., Robine, M., Butelli, E., Bulling, K., Hill, L., Rejzek M., Martin C., Schoonbeek, H. (2015). Different reactive oxygen species scavenging properties of flavonoids determine their abilities to extend the shelf life of tomato. Plant Physiol., 169(3), 1568–1583. DOI: 10.1104/pp.15.00346
Zhang, M., Yuan, B., Leng, P. (2009). The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J. Exp. Bot., 60, 1579–1588. DOI: 10.1093/jxb/erp026
Download

Published : 2019-12-17


Wiczkowski, W., Góraj-Koniarska, J., Saniewski, M., & Horbowicz, M. (2019). THE EFFECT OF FLURIDONE ON ACCUMULATION OF CAROTENOIDS, FLAVONOIDS AND PHENOLIC ACIDS IN RIPENING TOMATO FRUIT. Acta Scientiarum Polonorum Hortorum Cultus, 18(6), 36-49. https://doi.org/10.24326/asphc.2019.6.4

Wiesław Wiczkowski 
Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Department of Chemistry and Biodynamics of Food, Tuwima 10, 10-748 Olsztyn, Poland  Poland
Justyna Góraj-Koniarska 
Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland  Poland
Marian Saniewski 
Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland  Poland
Marcin Horbowicz  mhorbowicz@uph.edu.pl
Siedlce University of Natural Sciences and Humanities, Institute of Biological Sciences, Prusa 14, 08-110 Siedlce, Poland  Poland
https://orcid.org/0000-0002-1789-4034




 

Articles are made available under the CC BY-NC-ND 4.0 (recognition by authorship, non-commercial use, no dependent works).
The author signs a statement on the originality of the work and the contribution of individuals.

Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.