Skip to main navigation menu Skip to main content Skip to site footer

Vol. 18 No. 6 (2019)

Articles

THE EFFECT OF FLURIDONE ON ACCUMULATION OF CAROTENOIDS, FLAVONOIDS AND PHENOLIC ACIDS IN RIPENING TOMATO FRUIT

DOI: https://doi.org/10.24326/asphc.2019.6.4
Submitted: December 17, 2019
Published: 2019-12-17

Abstract

We examined the response of maturing tomato fruit exposed for 7 days to fluridone (1-methyl-3-phenyl-5-[3-trifluoromethyl(phenyl)]-4(1H)-pyridinone). Fluridone was applied in lanolin paste in the form of a 2–3 mm wide strip from the top to the base of the fruit. As a control, a similar stripe of lanolin was applied in the same way on the opposite side of the same fruit. The content of major carotenoids, as well as flavonoids, and free and bound phenolic acids were determined using a HPLC and HPLC-MS-MS methods. Fluridone almost completely blocked the biosynthesis of lycopene and substantial declined content of ß-carotene and lutein in the tomato fruit. The fluridone caused a decreased content of quercetin, rutin and naringenin, and increased level of epicatechin. The herbicide did not affect the content of p-coumaric acid, but reduced the level of caffeic acid, both free and ester form, and declined the content of free ferulic and chlorogenic acids. Changes in phenolics composition observed for the first time indicate that fluridone interferes with the biosynthesis of further products of the metabolism of p-coumaric acid, both flavonoids and phenolic acids.

References

  1. Alexander, L., Grierson, D. (2002). Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J. Exp. Bot., 53, 2039–2055. DOI: 10.1093/jxb/erf072
  2. Barros, L., Duenas, M., Pinela, J., Carvalho, A.M., Buelga, C.S., Ferreira, I.C.F.R. (2012). Characterization and quantification of phenolic compounds in four tomato (Lycopersicon esculentum L.) farmers’ varieties in Northeastern Portugal home gardens. Plant Foods Hum. Nutr., 67, 229–234. DOI: 10.1007/s11130-012-0307-z
  3. Barry, C.S., Giovannoni, J.J. (2007). Ethylene and fruit ripening. J. Plant Growth Regul. 26, 143–159. DOI: 10.1007/s00344-007-9002-y
  4. Bartels, P.G., Watson, C.W. (1978). Inhibition of carotenoid synthesis by fluridone and norflurazon. Weed Sci., 26, 198–203.
  5. Bilalis, D., Krokida, M., Roussis, I., Papastylianou, P., Travlos, I., Cheimona, N., Dede, A. (2018). Effects of organic and inorganic fertilization on yield and quality of processing tomato (Lycopersicon esculentum Mill.). Folia Hortic., 30(2), 321–332. DOI: 10.2478/fhort-2018-0027
  6. Bovy, A., de Vos, R., Kemper, M., Schijlen, E., Almenar Pertejo, M., Muir, S., Collins, G., Robinson, S.,Verhoeyen, M., Hughes, S., Santos-Buelga, C., van Tunen, A. (2002). High-flavonol tomatoes resulting from heterologous expression of the maize transcription factor gene LC and C1. Plant Cell, 14, 2509–2526. DOI: 10.1105/tpc.004218
  7. Carrillo-Lopez, A., Yahia, E. (2013). HPLC-DAD-ESI-MS analysis of phenolic compounds during ripening in exocarp and mesocarp of tomato fruit. J. Food Sci., 78, C1839–1844.
  8. Choi, S.H., Kim, D.-S., Kim, D.-S., Kozukue, N., Kim, H.-J., Nishitani, Y., Mizuno, M., Levin, C.E., Friedman, M. (2014). Protein, free amino acid, phenolic, ß-carotene, and lycopene content, and antioxidative and cancer cell inhibitory effects of 12 greenhouse-grown commercial cherry tomato varieties. J. Food Comp. Anal., 34, 115–127. DOI: 10.2478/prolas-2018-0014
  9. Czaplicki, S., Tańska, M., Konopka, I. (2016). Sea-buckthorn oil in vegetable oils stabilization. Ital. J. Food Sci., 28, 412–425. DOI: 10.14674/1120-1770/ijfs.v252
  10. Fraser, P.D., Bramley, P.M. (2004). The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res., 43, 228–265. DOI:10.1016/j.plipres.2003.10.002
  11. George, S., Tourniaire, F., Gautier, H., Goupy, P., Rock, E., Caris-Veyrat, C. (2011). Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chem., 124, 1603–1611. DOI: 10.1016/j.foodchem.2010.08.024
  12. Gapper, N.E., McQuinn, R.P., Giovannomi, J.J. (2013). Molecular and genetic regulation of fruit ripening. Plant Mol. Biol., 82, 575–591. DOI: 10.1007/s11103-013-0050-3
  13. Giorio, G., Yildirim, A., Stigliani, A.L., D’Ambrosio, C. (2013). Elevation of lutein content in tomato: a biochemical tug-of-war between lycopene cyclases. Metab. Eng., 20, 167–176. DOI:10.1016/j.ymben.2013.10.007
  14. Gomez-Romero, M., Segura-Carretero, A., Fernandez-Gutierrez, A. (2010). Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit. Phytochemistry, 71, 1848–1864. DOI: 10.1016/j.phytochem.2010.08.002
  15. Góraj-Koniarska, J., Saniewski, M., Kosson, R., Wiczkowski, W., Horbowicz, M. (2017). Effect of fluridone on some physiological and qualitative features of ripening tomato fruit. Acta Biol. Cracov. Bot., 59/2, 41–49. DOI: 10.1515/abcsb-2017-0012
  16. Hoffman, N.E., Yang, S.F. (1980). Changes of 1-aminicyclopropane-1-carboxylic acid content in ripening fruits in relation to their ethylene production rates. J. Am. Soc. Hortic. Sci., 105, 492–495.
  17. Jamil, M., Charnikhova, T., Verstappen, F., Bouwmeester, H. (2010). Carotenoides inhibitors reduce strigolactone production and Striga hermonthica infection in rice. Arch. Biochem. Biophys., 504, 123–131. DOI: 10.1016/j.abb.2010.08.005
  18. Jimenez, A., Creissen, G., Kular, B., Firmin, J., Robinson, S., Verhoeyen, M., Mullineaux, P. (2002). Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta, 214, 751–758. DOI: 10.1007/s004250100667
  19. Le Gal, G., Dupont, M.S., Mellon, F.A., Davis, A.L., Collins, G.J., Verhoeyen, M.E., Colquhoun, I.J. (2003). Characterization and content of flavonoids glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J. Agric. Food Chem., 51, 2348–2446. DOI: 10.1021/jf025995e
  20. Liu, L., Shao, Z., Zhang, M., Wang, Q. (2015). Regulation of carotenoid metabolism in tomato. Mol. Plant., 8, 28–39. DOI: 10.1016/j.molp.2014.11.006
  21. Martinez-Valverde, I., Periago, M.J., Provan, G., Chesson, A. (2002). Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicon esculentum). J. Sci. Food Agric., 82, 323–330. DOI: 10.1002/jsfa.1035
  22. Moise, A.R., Al-Babili, S., Wurtzel, E.T. (2014). Mechanistic aspects of carotenoid biosynthesis. Chem. Rev., 114, 164−193. DOI:10.1021/cr400106y
  23. Mondal, K., Sharma, N.S., Malhotra, S.P., Dhawan, K., Singh, R. (2004). Antioxidant systems in ripening tomato fruits. Biol. Plant., 48, 49–53. DOI: 10.1023/B:BIOP.0000024274.43874.5b
  24. Muir, S.R., Collins, G.J., Robinson, S., Hughes, S., Bovy, S., De Vos, C.H., van Tunen, A.J., Verhoeyen, M.E. (2001). Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat. Biotechnol., 19, 470–474.
  25. Rasmussen, R.D., Hole, D., Hess, J.R., Carman, J.G. (1997). Wheat kernel dormancy and abscisic acid level following exposure to fluridone. J. Plant Physiol., 150, 440–445. DOI: 10.1016/S0176-1617(97)80095-8
  26. Sabijon, J., Sudaria, M. (2018). Effect of vermicompost amendment and nitrogen levels on soil characteristics and growth and yield of tomato (Solanum lycopersicum cv. Diamante max). Int. J. Agric. Life Sci., 2(2), 145–153.
  27. Slimestad, R., Verheul, M. (2009). Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) cultivars. J. Sci. Food Agric., 89, 1255–1270. DOI: 10.1002/jsfa.3605
  28. Stewart, A.J., Bozonnet, S., Mullen, W., Jenkins, G.I., Lean, M.E., Crozier, A. (2000). Occurrence of flavonols in tomatoes and tomato-based products. J. Agric. Food Chem., 48, 2663–2669.
  29. Su, L., Diretto, G., Purgatto, E., Danoun, S., Zouine, M., Li, Z., Roustan, J.-P., Bouzayen, M., Giuliano, G., Chervin, C. (2015). Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. BMC Plant Biol., 15, 114. DOI: 10.1186/s12870-015-0495-4
  30. Weidner, S., Amarowicz, R., Karamać, M., Frączek, E. (2000). Changes in endogenous phenolic acids during development of Secale cereale caryopses and after dehydration treatment of unripe rye grains. Plant Physiol. Biochem., 38, 595–602. DOI: 10.1016/S0981-9428(00)00774-9
  31. Zanfini, A., Franchi, G.G., Massarelli, P., Corbini, G., Dreassi, E. (2017). Phenolic compounds, carotenoids and antioxidant activity in five tomato (Lycopersicon esculentum Mill.) cultivars. Ital. J. Food Sci., 29, 90–99. DOI: 10.14674/1120-1770/ijfs.v316
  32. Zhang, Y., De Stefano, R., Robine, M., Butelli, E., Bulling, K., Hill, L., Rejzek M., Martin C., Schoonbeek, H. (2015). Different reactive oxygen species scavenging properties of flavonoids determine their abilities to extend the shelf life of tomato. Plant Physiol., 169(3), 1568–1583. DOI: 10.1104/pp.15.00346
  33. Zhang, M., Yuan, B., Leng, P. (2009). The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J. Exp. Bot., 60, 1579–1588. DOI: 10.1093/jxb/erp026

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.