FOLIAGE APPLIED SILICON AMELIORATES DROUGHT STRESS THROUGH PHYSIO-MORPHOLOGICAL TRAITS, OSMOPROTECTANTS AND ANTIOXIDANT METABOLISM OF CAMELINA (Camelina sativa L.) GENOTYPES


Abstract

Silicon (Si) is one of the best plant defense elements against the biotic and abiotic stresses. Camelina plants accumulate Si which serves in protection against drought stress. The present study was conducted to investigate the impact of different doses of foliage applied Si (0, 3, 6 and 9 mM) under water stress (40% field capacity, FC) and non-stress conditions (100% FC) on camelina genotypes (Canadian and Australian). The imposed drought drastically decreased the growth parameters like root-shoot length and plant fresh and dry weight and also had negative impact on the chlorophyll content along with water relation attributes (water potential, osmotic potential and turgor pressure). In contrast, total free amino acids, total soluble proteins, proline and antioxidants such as ascorbic peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were enhanced especially in water stressed Canadian genotype, while osmoprotectants (flavonoids, anthocyanins and glycinebetaine) and phenolics contents were decreased. On the other hand, the foliar application of Si was instrumental in enhancing the growth of camelina by increasing the chlorophyll contents and water relation of stressed and non-stressed plants. Similarly, the biochemical, osmoprotectants and antioxidant metabolism was also improved in camelina stressed plants through the application of foliar Si. In conclusion, foliar application of 6 mM Si at vegetative growth stage played a vital role in alleviating the drastic impact of water stress on camelina growth by improving the water status, chlorophyll content, accumulation of phenolics and osmoprotectants and activating antioxidants. Therefore, the foliar application of Si could be developed as an important biologically viable strategy for boosting the tolerance in camelina plants to water stress conditions.


Keywords

antioxidants; biochemistry; camelina; drought stress; physiology and silicon

Abbas, T., Balal, R.M., Shahid, M.A., Pervez, M.A., Ayyub, C.M., Aqueel, M.A. (2015). Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiol. Plant., 37(2), 37–60. https://doi.org/10.1007/s11738-014-1768-5
Abramovic, H., Abram, V. (2005). Physiochemical properties, composition and oxidative stability of camelina sativa oil. Food Technol. Biotechnol., 43, 63–70.
Ahmad, Z., Waraich, E.J., Ahmad, R., Shahbaz, M. (2017). Modulation in water relations, chlorophyll contents and antioxidants activity of maize by foliar phosphorus application under drought stress. Pak. J. Bot., 49(1), 11–19.
Ahmed, M., Fayyaz, U.H., Qadeer, U., Aslam, M.A. (2011). Silicon application and drought tolerance mechanism of sorghum. Afr. J. Agr. Res., 6, 594–607.
Bates, L.S., Wladren, P.R., Tear, D.T. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205–207.
Bazzaz, Md. M., Hossain, A., Farooq, M., Alharby, H., Bamagoos, A., Md. Nuruzzaman, Khanum, M., Hossain, Md. M., Kizilgeci, F., Öztürk, F., Çig, F., El Sabagh, A. (2020). Phenology, growth and yield are strongly influenced by heat stress in late sown mustard (Brassica spp.) varieties. Pak. J. Bot., 52(4), 1189–1195. https://doi.org/10.30848/PJB2020-4(44
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein binding. Anal. Biochem., 72, 248–254.
Bukhari, M.A., Ashraf, M.Y., Ahmed, R., Waraich, E.J., Hameed, M. (2015). Improving drought tolerance potential in wheat (Triticum aestivum L.) through exogenous silicon supply. Pak. J. Bot., 47(5), 1641–1648.
Cakmak, I. (1994). Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium-and potassium-deficient leaves, but not in phosphorus-deficient leaves. J. Exp. Bot., 45, 1259–1266. https://doi.org/10.1093/jxb/45.9.1259
Chen, W., Yao, X., Cai, K., Chen, J. (2011). Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol. Trace Elem. Res., 142, 67–76. https://doi.org/10.1007/s12011-010-8742-x
Dixit, V., Pandey, V., Shyam, R. (2001). Differential antioxidative response to cadmium in roots and leaves of pea. J. Exp. Bot., 52, 1101–1109. https://doi.org/10.1093/jexbot/52.358.1101
El Sabagh, A., Hossain, A., Barutçular, C., Islam M.S., Ratnasekera, D., Kumar, N., Meena, R.S., Gharib, H.S., Saneoka, H., Teixeira da Silva, J.A. (2019). Drought and salinity stress management for higher and sustainable canola (Brassica napus L.) production: a critical review. Aust. J. Crop Sci., 13(01), 88–97.
El Sabagh, A. et al. (2020). Drought and heat stress in cotton (Gossypium hirsutum L.). Consequences and their possible mitigation strategies. In: Agronomic crops, Hasanuzzaman, M. (eds). Springer, Singapore, 613-634 https://doi.org/10.1007/978-981-15-0025-1_30
Ehsanzadeh, P., Nekoonam, M.S., Azhar, J.N., Pourhadian, H., Shaydaee, S. (2009). Growth chlorophyll and cation concentration of tetraploid wheat on a solution high in sodium chloride salt: Hulled versus free-threshing genotypes. J. Plant Nutr., 32(1), 58–70. https://doi.org/10.1080/01904160802531019
Faisal, M., Muhamamd, A.I., Serap, K.A., Abdul, H., Nasir, R., Ayman, S., Abdul, K., Muzammil, H.S. (2020). Exogenously foliage applied micronutrients efficacious impact on achene yield of sunflower under temperate conditions. Pak. J. Bot., 52(4), 1215–1221. http://dx.doi.org/10.30848/PJB2020-4(33)
Gesch, R.W. (2014). Influence of genotype and sowing date on camelina growth and yield in the north central U.S. Ind. Crops Prod., 54, 209–215. https://doi.org/10.1016/j.indcrop.2014.01.034
Giannopolitis, C.N., Ries, S.K. (1997). Superoxide dismutase I. Occurrence in higher plants. Plant Physiol., 59, 309–314.
Gong, H., Chen, K. (2012). The regulatory role of Si on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiol. Plant., 34, 1589–1594. https://doi.org/10.1007/s11738-012-0954-6
Gong, H., Chen, K., Chen, G., Wang, S., Zhang, C. (2003). Effects of silicon on growth of wheat under drought. J. Plant Nutr., 26, 1055–1063. https://doi.org/10.1081/PLN-120020075
Gong, H., Zhu, X., Chen, K., Wang, S., Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci., 169, 313–321. https://doi.org/10.1016/j.plantsci.2005.02.023
Grieve, C.M., Gratan, S.R. (1983). Rapid assay for determination of water soluble. Quaternary ammonium compounds. Plant Soil, 70, 303–307.
Gugel, R.K., Falk, K.C. (2006). Agronomic and seed quality evaluation of Camelina sativa in western Canada. Can. J. Plant Sci., 86, 1047–1058. https://doi.org/10.4141/P04-081
Hamdia, M.A., Shaddad, M.A.K. (2010). Salt tolerance of crop plants. J. Stress Physiol. Biochem., 6, 64–90.
Hattori, T., Inanagaa, S., Arakib, H. (2005). Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Plant., 123, 459–466. https://doi.org/10.1111/j.1399-3054.2005.00481.x
Hattori, T., Sonobe, K., Inanaga, S., An, P., Tsuji, W., Araki, H., Eneji, A.E., Morita, S. (2007). Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings raised with and without silicon. Environ. Exp. Bot., 60, 177–182. https://doi.org/10.1016/j.envexpbot.2006.10.004
Hrastar, R., Petrisic, M.G., Ogrinc, I., Kosir, I.G. (2009). Fatty acid and stable carbon isotope characterization of Camelina sativa oil: implications for authentication. J. Agric. Food Chem., 57, 579–585. https://doi.org/10.1021/jf8028144
Iqbal, M.A. (2019). Nano-fertilizers for sustainable crop production under changing climate: a global perspective. In: Crop Production, Hasanuzzaman, M. (ed.). IntechOpen. https://doi.org/10.5772/intechopen.89089
Iqbal, M.A., Abdul, H., Muzammil, H.S., Imtiaz, H., Tanveer, A., Saira, I., Anser, A. (2019). A meta-analysis of the impact of foliar feeding of micronutrients on productivity and revenue generation of forage crops. Planta Daninha, 37, e019189237. https://doi.org/10.1590/S0100-83582019370100046
Iqbal, A., Muhammad, A.I., Amir, I., Zubair, A., Muhammad, M., Zahoor, A., Muhammad, U.F., Ghulam, A., Muhammad, F. (2017). Boosting forage yield and quality of maize (Zea mays L.) with multi-species bacterial inoculation in Pakistan. Phyton-Int. J. Exp. Bot., 86, 84–88. https://doi.org/10.32604/phyton.2017.86.084
Irigoyen, J.J., Emerich, D.W., Sanchez-Diaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugar in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant., 84, 55–60. https://doi.org/10.1111/j.1399-3054.1992.tb08764.x
Karmollachaab, A., Gharineg, M.H., Bakhshandeh, M., Moradi, M., Fathi, G. (2014). Effect of silicon application on physiological characteristic and growth of wheat (Triticum aestivum L.) under drought stress conditions. J. Agroecol., 5(4), 430–442.
Kaya, C., Tuna, L., Higgs, D. (2006). Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J. Plant Nutr., 29, 1469–1480. https://doi.org/10.1080/01904160600837238
Kumari, A., Sairam, R.K. (2013). Moisture stress induced increases in the activity of enzymes of osmolytes biosynthesis are associated with stress tolerance in wheat genotypes. Indian J. Plant Physiol., 18, 223–230. https://doi.org/10.1007/s40502-013-0032-0
Lange, H., Shropshire, W., Mohr, H. (1971). An analysis of phytochrome–mediated anthocyanin synthesis. Plant Physiol., 47, 649–655.
Lee, Y.P., Takanashi, T. (1966). An improved colorimetric determination of amino acids with the use of ninhydrin. Anal. Biochem., 14, 71–77.
Lenssen, A.W., Iverson, W.M., Sainju, U.M., Caesar-Ton, T.C., Blodgett, S.L., Allen, B.L., Evans, R.G. (2012). Yield, pests, and water use of durum and selected crucifer oilseeds in two-year rotations. Agron. J., 104, 1295–1304. https://doi.org/10.2134/agronj2012.0057
Liang, Y.C., Zhu, J., Li, Z.J. (2008). Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environ. Exp. Bot., 64, 286–294. https://doi.org/10.1016/j.envexpbot.2008.06.005
Lu, C., Kang, J. (2008). Generation of transgenic plants of a potential oilseed crop camelina sativa by Agro-bacterium mediated transformation. Plant Cell Rep., 27, 273–278. https://doi.org/10.1007/s00299-007-0454-0
Matoh, T., Murata, S., Takahashi, E. (1991). Effect of silicate application on photosynthesis of rice plants (in Japanese). Japan J. Soil Sci. Plant Nutr., 62, 248–251.
Ming, D.F., Pei, Z.F., Naeem, M.S., Gong, H.J., Zhou, W.J. (2012). Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. J. Agron. Crop Sci., 198, 14–26. https://doi.org/10.1111/j.1439-037X.2011.00486.x
Moser, B.R. (2008). Influence of blending canola, palm, soybean, and sunflower oil methyl esters on fuel properties of biodiesel. Energy Fuels, 22, 4301–4306. https://doi.org/10.1021/ef800588x
Nawaz, F., Ashraf, M.Y., Ahmad, R., Waraich, E.A., Shabbir, R.N., Bukhari, M.A. (2015). Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions. Food Chem., 175, 350–357. https://doi.org/10.1016/j.foodchem.2014.11.147
Na, L., Jiashu, C. (2001). Effects of silicon on earliness and photosynthetic characteristics of melon. Acta. Hortic. Sin., 28, 421–424. https://doi.org/10.1155/2014/718716
Ordoñez, A.A.L., Gomez, J.G., Vattuone, M.A., Isla, M.I. (2006). Antioxidant activities of Sechiumedule (Jacq.) Swart extracts. Food Chem., 97, 452–458. https://doi.org/10.1016/j.foodchem.2005.05.024
Pei, Z.F., Ming, D.F., Liu, D., Wan, G.L., Geng, X.X., Gong, H.J., Zhou, W.J. (2010). Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat seedlings. Plant Growth Regul., 29, 106–115. https://doi.org/10.1007/s00344-009-9120-9
Pilgeram, A.L., Sands, D.C., Boss, D., Dale, N., Wichman, D., Lamb, P., Lu, C., Barrows, R., Kirkpatrick, M., Thompson, B., Johnson, D.L. (2007). Camelina sativa, a Montana omega-3 and fuel crop. In: Issues in new crops and new uses, Janick, J., Whipkey, A. (eds.). ASHS Press, Alexandria, 129–131.
Putnam, D.H., Budin, J.T., Field, L.A., Breene, W.M. (1993). Camelina: a promising low-input oilseed. In: New crops, Janick, J., Simon, J.E. (eds.). Wiley, New York, 314–322.
Reddy, T.Y., Reddy, V.R., Anbumozhi, V. (2003). Physiological responses of groundnut (Arachis hypogea L.) to drought stress and its amelioration: a critical review. Plant Growth Regul., 41, 75–88. https://doi.org/10.1023/A:1027353430164
Saneoka, H., Moghaieb, R.E.A., Premachandra, G.S., Fujita, K. (2004). Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostispalustris Huds. Environ. Exp. Bot., 52, 131–138. https://doi.org/10.1016/j.envexpbot.2004.01.011
Schillinger, W.F., Wysocki, D.J., Chastain, T.G., Guy, S.O., Karow, R.S. (2012). Camelina: planting date and method effects on stand establishment and seed yield. Field Crop Res., 130, 138–144. https://doi.org/10.1016/j.fcr.2012.02.019
Shi, Y., Zhang, Y., Han, W., Feng, R., Hu, Y., Guo, J. (2016). Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Front Plant Sci., 7, 196. https://doi.org/10.3389/fpls.2016.00196
Soundararajan, P., Sivanesan, I., Jana, S., Jeong, B.R. (2014). Influence of silicon supplementation on the growth and tolerance to high temperature in Salvias plendens. Hort. Environ. Biotechnol., 55, 271–279. https://doi.org/10.1007/s13580-014-0023-8
Subbarao, G.V., Num, N.H., Chauhan, Y.S., Johansen, C. (2000). Osmotic adjustment, water relation and carbohydrates remobilization in pigeon pea under water deficits. J. Plant Physiol., 157, 651–659. https://doi.org/10.1016/S0176-1617(00)80008-5
Waraich, E.A., Ahmad, R., Ahmad, R., Ahmed, Z., Ahmad, Z., Barutcular, C., Erman, M., Cig, F., Saneoka, H., Öztürk, F., El Sabagh, A. (2020a). Comparative study of growth, physiology and yield attributes of camelina (Camelina sativa L.) and canola (Brassica napus L.) under different irrigation regimes. Pak. J. Bot., 52(5), 1537–1544. https://doi.org/10.30848/PJB2020-5(2)
Waraich, E.A., Zahoor, A., Ahmad, R., Erman, M., Cig, F., El Sabagh, A. (2020b). Alterations in growth and yield of Camelina induced by different planting densities under water deficit stress. Phyton-Int. J. Exp. Bot., 89, 587. https://doi.org/10.32604/phyton.2020.08734
Waterhouse, A.L. (2001). Determination of total phenolics. In: Current protocols in food analytical chemistry, Wrolstad, R.E. (ed.). Wiley, Hoboken, pp.1–8.
Wysocki, D.J., Chastain, T.G., Schillinger, W.F., Guy, S.O., Karow, R.S. (2013). Camelina: seed yield response to applied nitrogen and sulfur. Field Crops Res., 145, 60–66. https://doi.org/10.1016/j.fcr.2013.02.009
Yao, X.Q., Chu, J.Z., Wang, G.Y. (2009). Effects of drought stress and selenium supply on growth and physiological characteristics of wheat seedlings. Acta Physiol. Plant., 5, 1031–1036. https://doi.org/10.1007/s11738-009-0322-3
Yousaf, M., Fahad, S., Shah, A.N., Shaaban, M., Khan, M.J., Sabiel, S.A.I., Ali, S.A.I., Wang, Y., Osman, K.A. (2014). The effect of nitrogen application rates and timing of first irrigation on wheat growth and yield. Int. J. Agric. Innov. Res., 2(4), 645–653.
Zahoor, A., Waraich, E.A., Barutçular, C., Hossain, A., Erman, M., Çiğ, F., Gharib H., EL Sabagh A. (2020). Enhancing drought tolerance in wheat through improving morphophysiological and antioxidants activities of plants by the supplementation of foliar silicon. Phyton-Int. J. Exp. Bot., 89(3), 529–539. https://doi.org/10.32604/phyton.2020.09143
Zhang, L., Li, Q., Yang, X., Xia, Z. (2012). Effects of sodium selenite and germination on the sprouting of chickpeas (Cicer arietinum L.) and its content of selenium, for-mononetin and biochanin A in the sprouts. Biol. Trace Elem. Res., 146, 376–380. https://doi.org/10.1007/s12011-011-9261-0
Download

Published : 2021-08-31


Ahmad, Z., Warraich, E., Iqbal, M., Barutçular, C., Alharby, H., Bamagoos, A., Cig, F., & Sabagh, A. (2021). FOLIAGE APPLIED SILICON AMELIORATES DROUGHT STRESS THROUGH PHYSIO-MORPHOLOGICAL TRAITS, OSMOPROTECTANTS AND ANTIOXIDANT METABOLISM OF CAMELINA (Camelina sativa L.) GENOTYPES. Acta Scientiarum Polonorum Hortorum Cultus, 20(4), 43-57. https://doi.org/10.24326/asphc.2021.4.4

Zahoor Ahmad 
Department of Botany, University of Central Punjab, Punjab Group of Colleges, Bahawalpur, Pakistan; Department of Field Crops, Faculty of Agriculture, Cukurova University, Turkey  Pakistan
Ejaz Ahmad Warraich 
Department of Agronomy, University of Agriculture Faisalabad, Pakistan  Pakistan
Muhammad Aamir Iqbal 
Department of Agronomy, The University of Poonch Rawalakot (AJK), Pakistan  Pakistan
Celaleddin Barutçular 
Department of Field Crops, Faculty of Agriculture, Cukurova University, Turkey;  Turkey
Hesham Alharby 
Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Saudi Arabia  Saudi Arabia
Atif Bamagoos 
Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Saudi Arabia  Saudi Arabia
Fatih Cig 
Department of Field Crops, Faculty of Agriculture, Siirt University, Turkey  Turkey
Ayman El Sabagh  aymanelsabagh@gmail.com
Department of Field Crops, Faculty of Agriculture, Siirt University, Turkey; Department of Agronomy, Faculty of Agriculture, Kafrel-sheikh University, Egypt  Egypt




Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

Articles are made available under the CC BY-NC-ND 4.0 International (recognition by authorship, non-commercial use, no dependent works).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.