Burdock (Arctium lappa L.) roots are traditionally used in folk medicine as diuretic and curing rheumatism, gastritis, gout, throat pain, arthritis and rashes. These pharmacological properties are due to many bioactive compounds such as flavonoids and fructooligosaccharides. Nowadays, the the application of  “green” methods for extraction of natural compounds gains more and more attention. The object of the current research was to determine inulin and sugars content, phenolic content and antioxidant potential in 70% ethanol and water extracts obtained by two “green“ extraction methods, namely pressure-liquid extraction and ultrasound-assisted techniques. The content of total fructans, as well as inulin and sugars were analyzed by spectrophotometric resorcinol-thiourea method and high-performance liquid chromatography with refractive index detection. Total phenols and flavonoids were determined by Folin-Chiocalteu and Al(NO3)3 reagents. Antioxidant activity was evaluated by four reliable methods (DPPH, ABTS, FRAP and CUPRAC). The established inulin content varied from 0.27 to 4.0 g/100 g dw in prevalence of the ultrasound-assisted extract obtained with water. Additionally, the established phenolic compounds content (from 10.35 to 18.16 mg gallic acid equivalent (GAE)/g dw) and antioxidant activities demonstrated the burdock roots as potential source phytonutrients with health beneficial properties.


burdock roots; inulin; antioxidant; “green” extraction techniques

Ameer, K., Shahbaz, H.M., Kwon, J.H. (2017). Green extraction methods for polyphenols from plant matrices and their byproducts. Compr. Rev. Food Sci. Food Saf., 16, 295–315. DOI: 10.1111/1541-4337.12253
Apak, R., Güçlü, K., Ozyürek, M., Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem., 52, 7970–7981. DOI: 10.1021/jf048741x
Bagaoutdinova, I., Fedoseyeva, P., Okoneshnikova, F. (2001). Fructose-containing carbohydrates in plants of different families. Localization and content. Chem. Comp. Sim. Butlerov Comm., 2, 13–16.
Benzie, I.F., Strain, J.J. (1999). Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol., 299, 15–27. DOI: 10.1016/s0076-6879(99)99005-5
Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Sci. Technol., 28, 25–30. DOI: 10.1016/S0023-6438(95)80008-5
Cai, Y., Luo, Q., Sun, M., Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci., 74, 2157–2184. DOI: 10.1016/j.lfs.2003.09.047
Cao, T.L., Yang, S.Y., Song, K.B. (2018). Development of burdock root inulin/chitosan blend films containing oregano and thyme essential oils. Int. J. Mol. Sci., 19, 131–143. DOI: 10.3390/ijms19010131
Castro-Puyana, M., Marina, M.L., Plaza, M. (2017). Water as green extraction solvent: Principles and reasons for its use. Curr. Opin. Green Sust., 5, 31–36. DOI: 10.1016/j.cogsc.2017.03.009
Chemat, F., Abert Vian, M. Cravotto, G. (2012). Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci., 13(7), 8615–8627. DOI: 10.3390/ijms13078615
Duh P.D. (1998). Antioxidant activity of burdock (Arctium lappa Linné): Its scavenging effect on free-radical and active oxygen. J. Am. Oil Chem. Soc., 75, 455–461. DOI: 10.1007/s11746-998-0248-8
Ferracane, R., Graziani, G., Gallo, M., Fogliano, V., Ritieni, A. 2010. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. J. Pharm. Biomed. Anal., 51, 399–404. DOI: 10.1016/j.jpba.2009.03.018
Fierascu, R.C., Georgiev, M.I., Fierascu, I., Ungureanu, C., Avramescu, S.M., Ortan, A., Georgescu, M.I., Sutan, A.N., Zanfirescu, A., Dinu-Pirvu, C E., Velescu, B.S. and Anutag, V. (2018). Mitodepressive, antioxidant, antifungal and anti-inflammatory effects of wild-growing Romanian native Arctium lappa L. (Asteraceae) and Veronica persica Poiret (Plantaginaceae). Food Chem. Toxicol., 111, 44–52. DOI: 10.1016/j.fct.2017.11.008
Hayouni, E.A., Abedrabba, M., Bouix, M., Hamdi, M. (2007). The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chem., 105, 1126–1134. DOI: 10.1016/j.foodchem.2007.02.010
Horng, C.T., Tsai, M.L., Hsueh, C.W., Hsu, S.Y., Wang, H.Y., Chen, F.A. (2013). Antioxidant activity of Arctium lappa L. and its effect on biochemical parameters in exercised rats. Asian J. Chem., 25, 1970–1974.
Ishiguro, Y., Onodera, S., Benkebli, N., Shiomi, N. (2010). Variation of total FOS, total IOS, inulin and their related-metabolizing enzymes in burdock roots (Arctium lappa L.) stored under different temperatures. Postharvest Biol. Technol., 56(3), 232–238. DOI: 10.1016/j.postharvbio.2010.01.010
Jaiswal, R., Kuhnert, N. (2011). Identification and characterization of five new classes of chlorogenic acids in burdock (Arctium lappa L.) roots by liquid chromatography/tandem mass spectrometry. Food Funct., 2(1), 63–71. DOI: 10.1039/c0fo00125b
Kivrak, I., Duru, M.E., Öztürk, M., Mercan, N., Harmandar, M., Topçu, G. (2009). Antioxidant, anticholinesterase and antimicrobial constituents from the essential oil and ethanol extract of Salvia potentillifolia. Food Chem., 116(2), 470–479. DOI: 10.1016/j.foodchem.2009.02.069
Lee, D., Kim, Ch.Y. (2017). Influence of roasting treatment on the antioxidant activities and color of burdock root tea. Prev. Nutr. Food Sci., 22(1), 21–29. DOI: 10.3746/pnf.2017.22.1.21
Li, H., Pordesimo, L. Weiss, J. (2004). High intensity ultrasound-assisted extraction of oil from soybeans. Food Res. Int., 37, 731–738. DOI: 10.1016/j.foodres.2004.02.016
Li, J., Liu, X., Zhou, B., Zhao, J., Li, S. (2013). Determination of fructooligosaccharides in burdock using HPLC and microwave-assisted extraction. J. Agric. Food Chem., 61(24), 5888–5892. DOI: 10.1021/jf400534n
Li, Y., Raymond, M., Mansuy-Huault, L., Fleck, S., Faure, P. (2002). Comparison of pressurized liquid extraction with classical solvent extraction and microwave-assisted extraction–application to the investigation of the artificial maturation of Mahakam coal. Fuel, 81, 747–755. DOI: 10.1016/S0016-2361(01)00192-2
Liu, J., Cai, Y.Z., Wong, R.N., Lee, C.K., Tang, S.C., Sze, S.C., Tong, Y., Zhang, Y. (2012). Comparative analysis of caffeoylquinic acids and lignans in roots and seeds among various burdock (Arctium lappa) genotypes with high antioxidant activity. J. Agric. Food Chem., 60, 4067–4075. DOI: 10.1021/jf2050697
Lou, Z., Wang, H., Wang, D., Zhang, Y. (2009). Preparation of inulin and phenols-rich dietary fibre powder from burdock root. Carbohydr. Polym., 78(4), 666–671. DOI: 10.1016/j.carbpol.2009.05.029
Machado, F.B., Yamamoto, R.E., Zanoli, K., Nocchi, S.R., Novello, C.R., Schuquel, I. T.A., Sakuragui, C.M., Luftmann, H., Ueda-Nakamura, T., Nakamura, C.V., Palazzo de Mello, J.C. (2012). Evaluation of the antiproliferative activity of the leaves from Arctium lappa by a bioassay-guided fractionation. Molecules, 17(2), 1852–1859. DOI: 10.3390/molecules17021852
Mihaylova, D., Lante, A., Krastanov, A. (2015). Total phenolic content, antioxidant and antimicrobial activity of Haberlea rhodopensis extracts obtained by pressurized liquid extraction. Acta Aliment., 44(3), 326–332. DOI: 10.1556/AAlim.2014.0009
Milani, E., Hosseini, F., Zaerzadeh, E., Golimovahhed, Q.A., Tavakkoli, A. (2012). Optimization of Inulin Extraction from Burdock Tuber by Using Response Surface Methodology (RSM). J. Med. Plants, 11, 149–158.
Olennikov, D.N., Tankhaeva, L.M. (2011). A quantitative assay for total fructans in burdock (Arctium spp.) roots. Rus. J. Bioorgan. Chem., 37(7), 893–898. DOI: 10.1134/S1068162011070181
Petkova, N., Ivanov, I., Vrancheva, R., Denev, P., Pavlov, A. (2017a). Ultrasound and microwave-assisted extraction of elecampane (Inula helenium) roots. N. Prod. Comm., 12(2), 171–177. DOI: 10.1177/1934578X1701200207
Petkova, N., Ivanova, L., Filova, G., Ivanov, I., Denev, P. (2017b). Antioxidants and carbohydrate content in infusions and microwave extracts from eight medicinal plants. J. Appl. Pharm. Sci., 7(10), 55–61. DOI: 10.7324/JAPS.2017.71008
Quispe-Candori, S., Foglio, M.A., Rosa, P.T.V, Meireles, M.A.A. (2008). Obtaining b-caryophyllene from Cordia verbenacea de Candolle by super critical fluid extraction. J. Supercr. Fluids, 46, 27–32. DOI: 10.1016/j.supflu.2008.02.015
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med., 26, 1231–1237. DOI: 10.1016/s0891-5849(98)00315-3
Rossetto, M., Lante, A., Vanzani, P., Spettoli, P., Scarpa, M., Rigo, A. (2005). Red chicories as potent scavengers of highly reactive radicals:  a study on their phenolic composition and peroxyl radical trapping capacity and efficiency. J. Agric. Food Chem., 53, 8169–8175. DOI: 10.1021/jf051116n
Stintzing, F.C., Nerbach, K.M., Mosshammer, M., Carle, R., Yi, W., Sellappan, S., Acoh, C.C., Bunch, R., Felker, P. (2005). Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. J. Agric. Food Chem., 53, 442–451. DOI: 10.1021/jf048751y
Van Loo, J., Coussement, P., De Leenheer, L., Hoebregs, H., Smits, G. (1995). On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit. Rev. Food Sci. Nutr., 35, 525–552. DOI: 10.1080/10408399509527714
Zhang, H., Chen, K., Zhang, P., Zhang, X., Wang, Z., Xue, J. (2018). Synthesis of acetylation burdock fructooligosaccharide (BFO). IOP Conf. Series: Earth Environ. Sci., 108(4), 042085. DOI: 10.1088/1755-1315/108/4/042085

Published : 2020-06-29

Petkova, N., Ivanov, I., Mihaylova, D., & Lante, A. (2020). EFFECT OF PRESSURE LIQUID EXTRACTION AND ULTRASONIC IRRADIATION FREQUENCY ON INULIN, PHENOLIC CONTENT AND ANTIOXIDANT ACTIVITY IN BURDOCK (Arctium lappa L.) ROOTS. Acta Scientiarum Polonorum Hortorum Cultus, 19(3), 125-133. https://doi.org/10.24326/asphc.2020.3.11

Nadezhda Petkova  petkovanadejda@abv.bg
Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 26 Maritza Blvd., Plovdiv, Bulgaria  Bulgaria
Ivan Ivanov 
Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 26 Maritza Blvd., Plovdiv,  Bulgaria
Dasha Mihaylova 
Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd., Plovdiv, Bulgaria  Bulgaria
Anna Lante 
Department of Agronomy, Food, Natural Resources, Animals, and Environment – DAFNAE, University of Padova, Viale Università 16, Agripolis, Italy  Italy

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Articles are made available under the CC BY-NC-ND 4.0 International (recognition by authorship, non-commercial use, no dependent works).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.