BIOTRANSFORMATION OF HYDROQUINONE AND 4-HYDROXYBENZOIC ACID IN Schisandra chinensis (CHINESE MAGNOLIA VINE) in vitro CULTURES

Agnieszka Szopa

Department of Pharmaceutical Botany, Jagiellonian University, Collegium Medicum, Medyczna 9, 30-688 Kraków, Poland

Inga Kwiecień

Department of Pharmaceutical Botany, Jagiellonian University, Collegium Medicum, Medyczna 9, 30-688 Kraków, Poland

Halina Ekiert

Department of Pharmaceutical Botany, Jagiellonian University, Collegium Medicum, Medyczna 9, 30-688 Kraków, Poland



Abstract

Optimization of the process of biotransformation of hydroquinone into its β-D-glucoside – arbutin, was performed in agitated shoot cultures of Schisandra chinensis. The optimisation involved testing various concentrations of the precursor and different ways of administering it. Arbutin was accumulated mainly in the in vitro cultured biomass (85.2–98.6%). By optimizing the process, a 2.26-fold increase in the overall product content was obtained. The highest amount (17.8 mg·g–1 DW) was found after administering 384 mg·l–1 hydroquinone in a dose divided into two portions. An experiment with the biotransformation of 4-hydroxybenzoic
acid did not produce arbutin but a mixture of two products of glucosylation of the precursor – hydroxybenzoic acid 4-O-β-glucopyranoside and 4-hydroxybenzoic acid β-glucopyranosyl ester. The identity of all biotransformation products was confirmed by 1H-NMR analysis. The results for the production of arbutin by the biotransformation of hydroquinone are of potential practical importance. On the other hand, the fact of confirming the presence of two glucosylation products has a great cognitive value.

Keywords:

schizandra, β-glucosylation, arbutin production, agitated shoot cultures, HPLC analysis

Akiu, S., Suzuki, Y., Fujinuma, Y., Asahara, T., Fukuda, M. (1991). Inhibitory effect of arbutin on melanogenesis: biochemical study in cultured B16 melanoma cells
and effect on the UV-induced pigmentation in human skin. Jap. J. Dermatol. (Nihon Hifuka Gakkai Zasshi), 101, 609–613 (in Japanese).
Azadbakht, M., Marston, A., Hostettmann, K., Ramezani, M., Jahromi Maghddam, M. (2004). Biological activity of leaf extract and phenologlycoside arbutin of Pyrus
boisseriana Buhse. J. Med. Plants, 3, 9–14.
Chen, J., Chen, J.J., Gao, K. (2014). Chemical constituents and biological activities of Dicranopteris linearis. Chem. Natural Comp., 49, 1129–1131.
Dušková, J., Dušek, J., Jahodár, L. (1999). Zur Biotransformation von Hydrochinon zu Arbutin in den In Vitro--Kulturen. Herba Pol., 45, 23–26.
Dušková, J., Jahodář, L., Dušek, J. (1994). Neue Möglichkeiten der Produktion von Arbutin durch Gewebekulturen. Pharmazie, 49, 624–624.
Ekiert, H., Kwiecień, I., Szopa, A., Muszyńska, B. (2012). Possibilities of arbutin production using plant biotechnology methods. Pol. J. Cosmetol., 15, 151–162.
European Pharmacopoeia (2008). Schisandrae chinensis fructus. European Directorate for the Quality of Medicines, vol. 6.3, Strasbourg.
European Pharmacopoeia (2016a). Schisandrae chinensis fructus. European Directorate for the Quality of Medicines, vol. 9.0, Strasbourg.
European Pharmacopoeia (2016b). Uvae ursi folium. European Directorate for the Quality of Medicines, vol. 9.0, Strasbourg.
Hancke, J.L., Burgos, R.A., Ahumada, F. (1999). Schisandra chinensis (Turcz.) Baill. Fitoterapia, 70, 451–471.
Keller, H., Hohlfeld, H., Wray, V., Hahlbrock, K., Scheel, D., Strack, D. (1996). Changes in the accumulation of soluble and cell wall-bound phenolics in elicitor-treated
cell suspension cultures and fungus-infected leaves of Solanum tuberosum. Phytochemistry, 42, 389–396.
Klick, S., Herrmann, K. (1988). Glucosides and glucose esters of hydroxybenzoic acids in plants. Phytochemistry, 27, 2177–2180.
Kurosu, J., Sato, T., Yoshida, K., Tsugane, T., Shimura, S., Kirimura, K., Kino, K., Usami, S. (2002). Enzymatic synthesis of α-arbutin by α-anomer-selective glucosylation
of hydroquinone using lyophilized cells of Xanthomonas campestris WU-9701. J. Biosci. Bioengineer., 93, 328–330.
Kwiecień, I., Szopa, A., Madej, K., Ekiert, H. (2013). Arbutin production via biotransformation of hydroquinone in in vitro cultures of Aronia melanocarpa (Michx.) Elliott. Acta Biochim. Pol., 60, 865–870.
Mandal, S.M., Chakraborty, D., Dey, S. (2010). Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal. Behav., 5, 359–368.
Migas, P., Krauze-Baranowska, M. (2015). The significance of arbutin and its derivatives in therapy and cosmetics. Phytochem. Lett., 13, 35–40.
Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15, 473–497.
Panossian, A., Wikman, G. (2008). Pharmacology of Schisandra chinensis Baill.: An overview of Russian research and uses in medicine. J. Ethnopharmacol., 118, 183–212.
Pękoś-Mirkowa, H., Mirek, Z. (2003). Flora Polski. Atlas Roślin Chronionych. Warszawa, Multico Oficyna Wydawnicza, pp. 132–133.
Piekoszewska, A., Ekiert, H., Zubek, S. (2010). Arbutin production in Ruta graveolens L. and Hypericum perforatum L. in vitro cultures. Acta Physiol. Plant., 32, 223–229.
Quintus, J., Kovar, K.A., Link, P., Hamacher, H. (2005). Urinary excretion of arbutin metabolites after oral administration of bearberry leaf extracts. Planta Med., 71,
147–152.
Recasens, J., Ninot, P., Cristobal, R., Ayemerich, P. (2008). Sustinable wild harvesting of Arctostaphylos uva-ursi in the Pyrenees as a conservation practice. J. Herbs Spices Med. Plants, 14, 1–12.
Skrzypczak-Pietraszek, E., Szewczyk, A., Piekoszewska, A., Ekiert, H. (2005). Biotransformation of hydroquinone to arbutin in plant in vitro cultures – preliminary results. Acta Physiol. Plant., 27, 79–87.
Štambergová, A., Supčiková, M., Leifertová, I. (1985). Hodnoceni fenolických lŕtek v Arctostaphylos uvaeursi. IV. Stanoveni arbutinu, metylarbutinu a hydrochinonu
v listech metodou HPLC. Českoslov. Farm., 34, 179–182.
Stammwitz, U. (1998). Pflanzliche Harnwegs-Desinfizienzien – heute noch aktuell? Z. Phytother., 19, 90–95.
Szopa, A., Ekiert, H. (2014). Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) in vitro cultures. In: Recent progress in medicinal plants. Biotechnology and
genetic engineering II, Govil, J.N., (ed.), vol. 39, Studium Press LLC, Houston, pp. 405–434.
Szopa, A., Kokotkiewicz, A., Marzec-Wróblewska, U., Bucinski, A., Luczkiewicz, M., Ekiert, H., (2016a). Accumulation of dibenzocyclooctadiene lignans in agar cultures and in stationary and agitated liquid cultures of Schisandra chinensis (Turcz.) Baill. Appl. Microbiol. Biotechnol., 100, 3965–3977.
Szopa, A., Klimek, M., Ekiert, H. (2016b). Cytryniec chiński (Schisandra chinensis) – znaczenie lecznicze i kosmetyczne. Chinese magnolia vine (Schisandra chinensis)
– therapeutic and cosmetic importance. Pol. J. Cosmetol., 19, 274–284.
Szopa, A., Ekiert, R., Ekiert, H. (2017a). Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: a review
on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochem. Rev., 16, 195–218.
Szopa, A., Kokotkiewicz, A., Bednarz, M., Luczkiewicz, M., Ekiert, H. (2017b). Studies on the accumulation of phenolic acids and flavonoids in different in vitro culture
systems of Schisandra chinensis (Turcz.) Baill. using a DAD-HPLC method. Phytochem. Lett., 20, 462–469.
Szopa, A., Kokotkiewicz, A., Łuczkiewicz, M., Ekiert, H. (2017c). Schisandra lignans production regulated by different bioreactor type. J. Biotechnol., 14, 11–17.
United States Pharmacopeia (1999). National Formulary, USP-NF.
WHO Monographs on selected medicinal plants (2007). Fructus Schisandrae. WHO, vol. 3, Geneva, pp. 296–313.
WHO Monographs on selected plants (2002). Folium Uvae ursi. WHO, vol. 2, Geneva, pp. 342–351.
Wichtl, M. (2007). Teedrogen und Phytopharmaka. Wissenschaftlische Verlagsgessellschaft mbH. Stuttgart, pp. 599–602.
Yokoyama, M., Inomata, S. (1998). Catharanthus roseus (Periwinckle): In vitro culture and high-level production of arbutin by biotransformation. In: Biotechnology
in agriculture and forestry. Medicinal and aromatic plants X, Bajaj, Y.P.S. (ed.), vol. 41, Springer, Berlin–Heidelberg, pp. 67–80.
Zubek, S., Janas, E., Ekiert, H. (2009). Optymalizacja warunków biotransformacji hydrochinonu w kulturach in vitro Ruta graveolens ssp. divaricata. XXXVIII Zjazd Polskich
Ogrodów Botanicznych. Poznań, Abstract book, pp. 99.
Download

Published
2017-12-31



Agnieszka Szopa 
Department of Pharmaceutical Botany, Jagiellonian University, Collegium Medicum, Medyczna 9, 30-688 Kraków, Poland
Inga Kwiecień 
Department of Pharmaceutical Botany, Jagiellonian University, Collegium Medicum, Medyczna 9, 30-688 Kraków, Poland
Halina Ekiert 
Department of Pharmaceutical Botany, Jagiellonian University, Collegium Medicum, Medyczna 9, 30-688 Kraków, Poland



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)