Skip to main navigation menu Skip to main content Skip to site footer

Vol. 12 No. 4 (2013)

Articles

PHENOLIC ACIDS IN SELECTED EDIBLE BASIDIOMYCOTA SPECIES: Armillaria mellea, Boletus badius, Boletus edulis, Cantharellus cibarius, Lactarius deliciosus AND Pleurotus ostreatus

Submitted: December 15, 2020
Published: 2013-08-31

Abstract

Phenolic acids, both derivatives of benzoic and cinnamic acids, possess valuable biologically properties: anti-inflammatory, antioxidant, anticarcinogenic and others.
Studies of the accumulation of these compounds focused mostly on plant material, but the Basidiomycota taxon are also the rich sources of these compounds. The aim of the study was qualitative and quantitative HPLC analysis of phenolic acids and cinnamic acid in fruiting bodies of selected edible mushroom species belonging to the phylum Basidiomycota: Armillaria mellea, Boletus badius, Boletus edulis, Cantharellus cibarius, Lactarius deliciosus and Pleurotus ostreatus. The investigations revealed the presence of the following acids: protocatechuic, p-hydroxybenzoic, p-coumaric, ferulic, sinapic, vanillic and cinnamic. Both the composition and the amount of phenolic acids in these species were diverse. The total amount ranged from 6.00 mg · kg-1 DW in A. mellea to 48.25 mg · kg-1 DW in
Boletus badius. Protocatechuic acid amounts fluctuated in the range of 1.37–21.38 mg · kg-1 DW, with its maximum in Boletus badius. p-Hydroxybenzoic and sinapic acid dominated in Pleurotus ostreatus. Cinnamic acid levels amounted from 1.09 to 8.73 mg · kg-1 mg DW and Boletus badius contained its highest content. The results show that edible mushrooms are a good dietary source of phenolic acids with antioxidant activity.

References

Alvarez-Parilla E., de la Rosa L.A., Martínez N.R., González Aguilar G.A., 2007. Total phenols and antioxidant activity of commercial and wild mushrooms from Chihuahua, Mexico. Cienc. Technol. Aliment. 5, 3, 29–334.
Barros L., Baptista P., Correia D.E., Casal S., Oliveira B., Ferreira I.C.F.R., 2007a. Fatty acid and sugar compositions and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chem. 105, 140–145.
Barros L., Calhelha R.C., Vas J.A., Ferreira I.C.F.R., Baptista P., Estevinh L.M., 2007b. Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts. Eur Food Res. Technol. 225,151–156.
Barros L., Cruz T., Baptista P., Estevinho L.M., Ferreira I.C.F.R., 2008. Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem. Toxicol. 46 (8), 2742–2747.
Barros L., Duenas M., Ferreira I.C.F.R., Baptista P., Santos-Buelga C., 2009. Phenolic acids determination by HPLC-DAD-ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem. Toxicol. 4 (6), 1076–1079.
Cheung P.C.K., 2010. The nutritional and health benefits of mushroom. Nutr. Bull. 35, 292–299.
Dubost N.J., Ou B, Beelman R.B., 2007. Quantification of polyphenoes and ergothioneine in clultivated mushrooms and correlation to total antioxidant capacity. Food Chem. 5, 717–735.
Ellnain-Wojtaszek M., 1997. Phenolic acids from Ginkgo biloba L. Part I. Qualitative analysis of free and liberated by hydrolysis phenolic acids. Acta Pol. Pharm. 54 (3), 225–228.
Elmastas M., Isıldak O., Turkekul I., Temur N., 2007. Determination of antioxidant activity and compounds in wild edible mushrooms. J. Food Compos. Anal. 20, 337–345.
Ey J., Schomig E., Taubert D., 2007. Dietary sources and antioxidant effects of ergothioneine. J. Agric. Food Chem. 55 (16), 6466–6474.
Ferreira I.C., Barros L., Abreu R.M., 2009. Antioxidants in wild mushrooms. Curr. Med. Chem. 16 (12), 1543–1560.
Ferreira I.C.F.R., Baptista P., Vilas-Boas M., Barros L., 2007. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem. 100, 511–1516.
Froufe H.J., Abreu R.M., Ferreira I.C., 2009. A QCAR model for predicting antioxidant activity of wild mushrooms. SAR QSAR Environ Res. 20 (5–6), 579–590.
Gunde-Cimerman N., Cimerman A., 1995. Pleurotus fruiting bodies contain the inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase-lovastatin. Exp Mycol., 19, 1–6.
Hatzipanayioti D., Petropouleas P., 2006. Theoretical and experimental investigation of the semiquinone forms of protocatechuic acid. The effect of manganese. Spectrochim Acta A Mol. Biomol. Spec.trosc., 75 (3), 997–1007.
Karaman M., Jovin E., Malbasa R., Matavuly M., Popovic M., 2010. Medicinal and edible lignicolous fungi as natural sources of antioxidative and antibacterial agents. Phytother. Res. 24 (10), 1473–1481.
Kim M.Y., Seguin P., Ahn J. K., Kim J.J, Chun S.C., Kim E.H., Se S.H., Kang E.Y., Kim S.L., Mansour A., Makris D.P., Kefalas A., 2008. Dermination of hydrogen peroxide scavenging activity of cinnamic and benzoic acids employing a highly sensitive peroxylate chemiluminescense-based assey: structure – activity relationships. J. Pharm. Biomed. Anal., 39, 22–26.
Knudsen H., Vesterholt J., 2008. Funga Nordica: agaricoid, boletoid and cyphelloid genera. Copenhagen, Nordsvamp.
Mattila P., Konko K., Eurola M., Pihlava J.M., Astola J., Vahteristo L., Hietaniemi V., Kumpulainen J., Valtonen M., Piironen V., 2001. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 49 (5), 2343–2348.
Muszyńska B., Sułkowska-Ziaja K., Ekiert H., 2010. Główne grupy związków i pierwiastki z aktywnością biologiczną w wybranych gatunkach grzybów z taksonu Basidiomycota. Farm Pol. 66, 11, 804–814.
Muszyńska B., Sułkowska-Ziaja K., Ekiert H., 2011a. Analysis of indole copounds in fruiting bodies of Armillaria mellea fruiting bodies. Acta Pol. Pharm. 68, 93–97.
Muszyńska B., Sułkowska-Ziaja K., Ekiert H., 2011b. Indole compounds in fruiting bodies of some edible Basidiomycota species. Food Chem. 125, 1306–1308.
Muszyńska B., Sułkowska-Ziaja K., Ekiert H., 2011c. Indole compounds in some culinary – medicinal higher basidiomycetes from Poland. Int. J. Med. Mushrooms., 13, 449-–454.
Muszyńska B., Sułkowska-Ziaja K., Ekiert H., 2012. An antioxidant in fruiting bodies and in mycelia from in vitro cultures of Calocera viscosa (Basidiomycota)-preliminary results. Acta Pol. Pharm. 69 (1), 135–138.
Puttaraju N.G., Venkateshaiah S.U., Dharmesh S.M., Urs S.M., Somasundaram R., 2006. Antioxidant activity of indigenous edible mushrooms. J. Agric. Food Chem. 54 (26), 9764–9772.
Rangel-Castro J.I., Staffas A., Danell E., 2002. The ergocalciferol content of dried pigmented and albino Cantharellus cibarius fruit bodies. Mycol. Res. 106, 70–73.
Ribeiro B., Rangel J., Valentao P., Baptista P., Seabra R.M., Andrade P.B., 2006. Contents of carboxylic acids and two phenolics and antioxidant activity of dried portuguese wild edible mushrooms. J. Agric. Food Chem. 54 (22), 8530–8537.
Ribeiro B., Valentao P., Baptista P., Seabra R.M., Andrade P.B., 2007. Phenolic compounds, organic acids profiles and antioxidative properties of beefsteak fungus (Fistulina hepatica). Food Chem. Tox. 45 (10), 1805–1813.
Rodriguez Vaquero M.J., Alberto M.R., Manca de Nadra M.C., 2007. Influence of phenolic compounds from wines on the growth of Listeria monocytogenes. Food Contr. 18, 587–593.
Santoyo S., Ramírez-Anguiano A.C., Reglero G., Soler-Rivas C., 2009. Improvement of the antimicrobial activity of edible mushroom extracts by inhibition of oxidative enzymes. Internat. J. Food Sci. Tech. 44, 1057–1064.
Sarikurkcu C., Tepe B., Yamac M., 2008. Evaluation of the antioxidant activity of four edible mushrooms from the Central Anatolia, Eskisehir - Turkey: Lactarius deterrimus, Suillus collitinus, Boletus edulis, Xerocomus chrysenteron. Biores. Tech. 99 (14), 6651–6655.
Scalbert A., Manach C., Morand C., Remesy C., Jimenez L., 2005. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 45 (4), 287–306.
Seeger H., Wallwiener D., Mueck A.O., 2003. Statins can inhibit proliferation of human breast cancer cells in vitro. Exp. Clin. Endocrinol. Diabetes. 111, (1), 47–48.
Singh M., Arseneault M., Sanderson T., Murthy V., Ramassamy C., 2008. Challenges for research on polyphenols from foods in Alzheimer’s disease: bioavailability, metabolism, and cellular and molecular mechanisms. J. Agric. Food Chem. 56 (13), 4855–4873.
Sleijfer S., van der Gaast A., Planting A.S., Stoter G., Verweij J., 2005. The potential of statins as part of anti-cancer treatment. Eur J. Cancer. 41, 4, 516–522.
Stamets P., 2002. Novel antimicrobials from mushrooms. Herbal Gram. 54, 28–33.
Terpinc P., Abramovič A., 2010. A kinetic approach for evaluation of the antioxidant activity of selected phenolic acids. Food Chem. 121, 366–371.
Valentao P., Andrade P.B., Rangel J., Ribeiro B., Silva B.M., Baptista P., Seabra R.M., 2005. Effect of the conservation procedure on the contents of phenolic compounds and organic acids in chanterelle (Cantharellus cibarius) mushroom. J. Agric. Food Chem. 53 (12), 4925–4931.
Vaz J.A., Barros L., Martins A., Morais J.S., Celestino Santos-Buelga M., Vasconcelo H., Ferreira I.C.F.R., 2011a. Chemical composition of wild edible mushrooms and antioxidant properties of their water soluble polysaccharidic and ethanolic fractions. Food Chem. 126, 610–616.
Vaz J.A., Barros L., Martins A., Morais J.S., Vasconcelos M.H., Ferreira I.C.F.R., 2011b. Phenolic profile of seventeen Portuguese wild mushrooms. LWT – Food Sci. Tech. 44, 343–346.
Wasser S.P., Weis A.L., 1999. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit. Rev. Immunol. 1 (1), 65–96
Wee J.J., 2010. Identification of Anticoagulant Components in Korean Red Ginseng. J Ginseng Res. 34, 355–362.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.