RELATIONSHIP BETWEEN DIFFERENT PHYSICAL PROPERTIES OF TOMATO FRUITS AND WATER LOSS DURING POSTHARVEST

Carlos Alberto Bouzo

Universidad Nacional del Litoral, Argentine

Norberto Francisco Gariglio

Universidad Nacional del Litoral, Argentine



Abstract

Abstract. Water loss contributes to acceleration of postharvest senescence of tomato (Solanum lycopersicum L.). Ten cultivars representing two fruit types were studied. Fruit were stored at 25ºC and 75% relative humidity. Physical characteristics were examined to determine relationships between physical properties and water loss rate in tomato fruit. Water loss rate increased almost linearly with storage time and was different for each cultivar. When the vapour pressure deficit was increased the fruit water loss rate was affected among cultivars. Water loss rate was positively correlated with initial fruit water content. An increase in the surface are a to volume of fruit may explain the differences in water loss that was observed between cultivars. The cuticle thickness did not influence the differences
in the fruit water loss during storage. However, it was observed the existence of a positive correlation between Surface Area of the Peduncle Scar to Fruit Surface Area ratio and water loss of the tomato fruit.

Keywords:

Solanum lycopersicum L., cultivars, transpiration fruit, physical properties

Bartz, J.A., Showalter, R.K. (1981). Infiltration of tomatoes by aqueous bacterial suspensions. Postharv. Pathol. Mycotox., 71(5), 515–518.
Bartz, J.A., Brecht, J.K. (2005). Postharvest physiology and pathology of vegetables. Taylor and Francis, NY, 816 p.
Ben-Yehoshua, S., Rodov, V. (2003). Transpiration and water stress. In: Postharvest physiology and pathology of vegetable (2nd ed.), Bartz, I.A., Brecht J.K. (eds). New York, USA, 119–173.
Ben-Yehoshua, S. (1987). Transpiration, water stress and gas exchange. In: postharvest physiology of vegetables, Weichmann, J. (ed.). New York, USA. Marcel Dekker Inc. p. 113–172.
Cameron, A.C., Yang, S.F. (1982). A simple method for the determination of resistance to gas diffusion in plant organ. Plant Physiol., 70, 21–23.
Díaz-Pérez, J.C. (1998). Transpiration rates in eggplant fruit as affected by fruit and calyx size. Postharv. Biol. Technol., 13(1), 45–49.
Díaz-Pérez, J.C., Muy-Rangel, M.D., Mascorro, A.G. (2007). Fruit size and stage of ripeness affect postharvest water loss in bell pepper fruit (Capsicum annuum L.). J. Sci. Food Agricult., 87, 68–73.
Dodds, G.T., Ludford, P.M. (1990). Surface topology of chilling injury of tomato fruit. HortSci., 25(11), 1416–1419.
Dorais, M., Papadopoulos, A.P., Gosselin, A. (2001). Greenhouse tomato fruit quality. Horticult. Rev., 26, 239–319.
Hertog, M.L., Ben-Arie, R., Róth, E., Nicolaï, B.M. (2004). Humidity and temperature effects on invasive and non-invasive firmness measures. Postharv. Biol. Technol., 33, 79–91.
Isaacson, T., Kosma, D.K., Matas, A.J., Buda, G.J., He, Y., Yu, B., Pravitasari, A., Batteas, J.D., Stark, R.E., Jenks, M.A., Rose, J.C.C. (2009). Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpiration water loss. Plant J., 60, 363–377.
Kader, A.A. (2002). Postharvest biology and technology: An overview. In: Postharvest technology of horticultural crops, Kader A.A. (ed.). Oakland, California, USA. Publications Division of Agrigulture and Natural Resources, University of California, p. 15–20.
Kerstiens, G. (2006). Water transport in plant cuticles: an update. J. Exp. Bot., 57, 2493–2499.
Lownds, N.K., Banaras, M., Bosland, P.W. (1993). Relationships between postharvest water loss and physical properties of pepper fruit (Capsicum annuum L.). HortSci., 28(12), 1182–1184.
Lownds, N.K., Banaras, M., Bosland P.W. (1994). Postharvest water loss and storage quality of nine pepper (Capsicum) cultivars. HortSci., 29, 191–193.
Luque, P., Bruque, S., Heredia, A. (1995). Water permeability of isolated cuticular membranes: An structural analysis. Ann. Bot., 1183, 417–422.
Karlova, R., Chapman, N., David, K., Angenent, G.C., Symour, G.B., de Maagd, R.A. (2014). Transcriptional control of fleshy fruit development and ripening. J. Exp. Bot., 65(16), 4527–4541.
Kosma, D.K., Parsons, E.P., Isaacson, T., Lü, S., Rose, J.K.C., Jenks, M.A. (2010). Fruit cuticle lipid composition during development in tomato ripening mutants. Physiol. Plant., 139(1), 107–117.
Maarten, L.A., Hertog, T.M., Ben-Arie, R., Róth, E., Nicolaï, B.M. (2004). Humidity and temperature effects on invasive and non-invasive firmness measures. Postharv. Biol. Technol., 33(1), 79–91.
Nascimento Nunes, M.C. (2008). Color atlas of postharvest quality of fruits and vegetables. Blackwell Publishing. Iowa, USA, 463 p.
Nobel, P.S. (2009). Physicochemical and environmental plant physiology, 4th ed., Elsevier, London, UK, 604 p.
Nunes, C.N., Emond, J.P. (2007). Relationship between weight loss and visual quality of fruits and vegetables. Proc. Fla. State Hort. Soc., 120, 235–245.
Robinson, J.E., Browne, K.M., Burton, W.G. (1975). Storage characteristics of some vegetables and soft fruits. Ann. Appl. Biol., 81, 399–408.
Saladié, M., Matas, A.J., Isaacson, T., Jenks, M.A., Goodwin, S.M., Niklas, K.J. Xiaolin, R., Labavitch, J.M., Shackel, K.A., Fernie, A.R., Lytovchenko, A., OʼNeill, M.A., Watkins, C.B., Rose, J.K.C. (2007). A revaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol., 144, 1012–1028.
Saltveit, M.E., Jr. (1991). Determining tomato fruit maturity with nondestructive in vivo nuclear magnetic resonance imaging. Postharv. Biol. Technol., 1, 153–159.
Shirazi, A., Cameron, A.C. (1993). Measuring transpiration of tomato and other detached fruit. HortSci., 28(10), 1035–1038.
Tanada-Palmu, P., Helén, H., Hyvönen, L. (2000). Preparation, properties and applications of wheat gluten edible films. Agricult. Food Sci., 9, 23–35.
Vogg, G., Fischer, S., Leide, J., Emmanual, E., Jetter, R., Levy, A.A., Riederer, M. (2004). Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid b-ketoacyl-CoA synthase. J. Exp. Bot., 55(401), 1401–1410.
Wills, R.B., McGlasson, W.B., Graham, D., Lee, T.H., Hall, E.G. (1989). Postharvest. An introduction to the physiology and handling of fruit and vegetables. Van Nostand Reinhold. New York, 174 p.
Download

Published
2016-02-29



Carlos Alberto Bouzo 
Universidad Nacional del Litoral, Argentine
Norberto Francisco Gariglio 
Universidad Nacional del Litoral, Argentine



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.