FATTY ACIDS AND PHYSIOLOGICAL RESPONSES OF CORN LEAVES EXPOSED TO HEAVY METALS

Dursun Kisa

Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey

Lokman Öztürk

Department of Biology, Faculty of Science and Arts, Gaziosmanpaşa University, Tokat, Turkey

Necdettin Sağlam

Department of Horticulture, Faculty of Agriculture, Gaziosmanpaşa University, Tokat, Turkey

Ömer Kayir

Scientific, Technical, Research and Application Center, Hitit University, Çorum, Turkey

Mahfuz Elmastaş

Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, University of Health Sciences, İstanbul, Turkey

Serhat Döker

Çankırı Karatekin University, Faculty of Science, Department of Chemistry, 10100, Çankırı, Turkey


Abstract

Heavy metals affect biochemical pathway by changing the fatty acid composition in plant cells. The high concentration of heavy metals impresses biochemical pathway and changes fatty acid compositions of plant cells. Fatty acids participate in various biological processes and have the functional role in regulating membrane functions in plants. In the present study, heavy metal content was analyzed with ICP-MS, fatty acid composition was investigated with GC and physiological parameters were determined with spectrophotometrically in the leaves of tomato subjected to increasing doses of heavy metals. In this study, the treatment of heavy metals on the growth medium changed the fatty acid contents of corn. The application of Cu significantly increased the level of palmitic acid and oleic acid. The treatment of Pb raised the content of oleic acid, whereas it significantly decreased the content of α-linolenic acid and erucic acid at 20 and 50 mg kg–1, respectively. The addition of Cd significantly increased the level of oleic acid and linoleic acid; however, it significantly decreased the content of α-linolenic acid and erucic acid. Cu and Pb significantly raised the proline content. The application of Cu and Cd showed similar effect on hydrogen peroxide and the higher doses of them increased the content of H2O2. The level of lipid peroxidation significantly increased in response to all applied concentration of Cu. The results obtained in this study show that the aapplication of heavy metals changed the content of fatty acids, particularly that of oleic acid significantly increased in response to them. The levels of proline and lipid peroxidation generally increased together with oleic acid and palmitic acid in the leaves in reply to copper.

Keywords:

fatty acid, heavy metal, lipid peroxidation, proline, Zea mays

Bates, L.S., Waldren. R.P., Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205–207. DOI: 10.1007/BF00018060

Beisson, F., Bonaventure, G., Pollard, M., Ohlrogge, J. (2007). The Acyltransferase GPAT5 Is Required for the Synthesis of Suberin in Seed Coat and Root of Arabidopsis. Plant Cell, 19, 1351–368. DOI: 10.1105/tpc.106.048033

Bligh, E.G., Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37, 911–917. DOI: dx.doi.org/10,1139/cjm2014-0700

Chalbi, N., Hessini, K., Gandour, M., Mohamed, S.N., Smaoui, A., Abdelly, C., Ben Youssef, N. (2013). Are changes in membrane lipids and fatty acid composition related to salt-stress resistance in wild and cultivated barley? J. Plant Nutr. Soil Sci., 176, 138–147. DOI: 10.1002/jpln.201100413

Deleanu, M., Sanda, G.M., Stancu, C.S., Popa, M.E., Sima, A.V. (2016). Profiles of fatty acids and the main lipid peroxidation products of human atherogenic low density lipoproteins. Rev. Chim., 67, 2–7.

Demirevska-Kepova, K., Simova-Stoilova, L., Stoyanova, Z.P., Feller, U. (2006). Cadmium Stress in Barley: Growth, Leaf Pigment, and Protein Composition and Detoxification of Reactive Oxygen Species. J. Plant. Nutr., 29, 451–468. DOI: 10.1080/01904160500524951

Djebali, W., Zarrouk, M., Brouquisse, R., El-Kahoui, S., Limam, F., Ghorbel, M.H., Chaïbi, W. (2005). Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes. Plant Biol., 7, 358–368. DOI: 10.1055/s-2005-837696

Gomez, R.E., Joubes, J., Valentin, N., Batoko, H., Satiat-Jeunemaitre, B., Bernard, A. (2018). Lipids in membrane dynamics during autophagy in plants. J. Exp. Bot. 69, 1287–1299. DOI: 10.1093/jxb/erx392

Gonçaalves, J.F., Becker, A.G., Cargnelutti, D., Tabaldi, L.A., Pereira, L.B., Battisti, V., Spanevello, R.M., Morsch, V.M., Nicoloso, F.T., Schetinger, M.R.C. (2007). Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings. Brazilian J. Plant Physiol., 19, 223–232. DOI: 10.1590/S1677-04202007000300006.

Gratao, P.L., Monteiro, C.C., Antunes, A.M., Peres, L.E.P., Azevedo, R.A. (2008). Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Ann. Appl. Biol., 153, 321–333. DOI: 10.1111/j.1744-7348.2008.00299.x

Guedard, M.L., Faure, O., Besseoule, J.J. (2012). Early changes in the fatty acid composition of photosynthetic membrane lipids from Populus nigra grown on a metallurgical landfill. Chemosphere, 88(6), 693-698. DOI: 10.1016/j.chemosphere.2012.03.079

Guo, T.R., Zhang, G.P., Zhang, Y.H. (2007). Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids Surfaces B Biointerfaces, 57, 182–188. DOI: 10.1016/j.colsurfb.2007.01.013

Hasan, S.A., Fariduddin, Q., Ali, B., Hayat, S., Ahmad, A. (2009). Cadmium: Toxicity and tolerance in plants. J. Environ. Biol., 30(2), 165–174.

Hassan, M., Mansoor, S. (2014). Oxidative stress and antioxidant defense mechanism in mung bean seedlings after lead and cadmium treatments. Turkish J. Agric. For., 38, 55–61. DOI: 10.3906/tar-1212-4

Hou, W., Chen, X., Song, G., Wang, Q., Chi, C.C. (2007). Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol. Biochem., 45, 62–69. DOI: 10.1016/j.plaphy.2006.12.005

Iba, K. (2002). Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol., 53, 225–245. DOI: 10.1146/annurev.arplant.53.100201.160729

John, R., Ahmad, P., Gadgil, K., Sharma, S. (2008). Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ., 54, 262–270.

Kaur, G., Asthir, B. (2015). Proline: a key player in plant abiotic stress tolerance. Biol. Plant 59, 609–619. DOI: 10.1007/s10535-015-0549-3

Kisa, D. (2018). The Responses of Antioxidant System against the Heavy Metal-Induced Stress in Tomato. J. Nat. Appl. Sci., 22, 1–6. DOI: 10.19113/sdufbed.52379

Kısa, D. (2017). Expressions of glutathione-related genes and activities of their corresponding enzymes in leaves of tomato exposed to heavy metal. Russ J Plant Physiol 64:876–882. DOI: 10.1134/S1021443717060048.

Le Guédard, M., Faure, O., Bessoule, J.J. (2012). Soundness of in situ lipid biomarker analysis: Early effect of heavy metals on leaf fatty acid composition of Lactuca serriola. Environ. Exp. Bot., 76, 54–59. DOI: 10.1016/j.envexpbot.2011.10.009

Liu, X., Huang, B. (2004). Changes in Fatty Acid Composition and Saturation in Leaves and Roots of Creeping Bentgrass Exposed to High Soil Temperature. J. Am. Soc. Hortic. Sci., 129, 795–801.

Maiti, S., Ghosh, N., Mandal, C., Das, K., Dey, N., Adak, M.K. (2012). Responses of the maize plant to chromium stress with reference to antioxidation activity. Brazilian J. Plant Physiol. 24, 203–212. DOI: 10.1590/S1677-04202012000300007

Mithöfer, A., Schulze, B., Boland, W. (2004). Biotic and heavy metal stress response in plants: Evidence for common signals. FEBS Lett., 566, 1–5. DOI: 10.1016/j.febslet.2004.04.011

Moradkhani, S., Ali, R., Nejad, K., Dilmaghani, K. (2012). Effect of salicylic acid treatment on cadmium toxicity and leaf lipid composition in sunflower. J. Stress Physiol. Biochem., 8, 78–89.

Morsy, A.A., Salama, K.H.A., Kamel, H.A., Mansour, M.M.F. (2012). Effect of heavy metals on plasma membrane lipids and antioxidant enzymes of Zygophyllum species. Eurasian J. Biosci., 1–10. DOI: 10.5053/ejobios.2012.6.0.1

Mourato, M.P., Moreira, I.N., Leitão, I., Pinto, F.R., Sales, J.R., Martins, L.L. (2015). Effect of heavy metals in plants of the genus Brassica. Int. J. Mol. Sci., 16, 17975–17998. DOI: 10.3390/ijms160817975

Niu, L., Liao, W. (2016). Hydrogen Peroxide Signaling in Plant Development and Abiotic Responses: Crosstalk with Nitric Oxide and Calcium. Front Plant Sci., 7, 1–14. DOI: 10.3389/fpls.2016.00230

Niu, Y., Xiang, Y. (2018). An Overview of Biomembrane Functions in Plant Responses to High-Temperature Stress. Front Plant Sci., 9(915), 1–18. DOI: 10.3389/fpls.2018.00915

Pál, M., Horváth, E., Janda, T., Páldi, E., Szalai, G. (2005). Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays) plants. Physiol. Plant 125, 356–364. DOI: 10.1111/j.1399-3054.2005.00545.x

Park, W., Feng, Y., Kim, H., Suh, M.C., Ahn, S.J. (2015). Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress. Plant Cell. Rep. 34, 1489–1498. DOI: 10.1007/s00299-015-1801-1

Rabei, A., Hichami, A., Beldi, H., Bellenger, S., Khan, N.A., Soltani, N. (2018). Fatty acid composition, enzyme activities and metallothioneins in Donax trunculus (Mollusca, Bivalvia) from polluted and reference sites in the Gulf of Annaba (Algeria): Pattern of recovery during transplantation. Environ Pollut., 237, 900–907. DOI: 10.1016/j.envpol.2018.01.041

Rahayu, S.M., Suseno, S.H., Ibrahim, B. (2014). Proximate, latty acid profile and heavy metal content of selected by-catch fish species from Muara Angke, Indonesia. Pakistan J. Nutr., 13, 480–485.

Savchenko, T., Walley, J.W., Chehab, E.W., Xiao, Y., Kaspi, R., Pye, M.F., Mohamed, M.E., Lazarus, C.M., Bostock, R.M., Dehesh, K. (2010). Arachidonic Acid: An Evolutionarily Conserved Signaling Molecule Modulates Plant Stress Signaling Networks. Plant Cell, 22, 3193–3205. DOI: 10.1105/tpc.110.073858

Schat, H., Sharma, S.S., Vooijs, R. (1997). Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol. Plant, 101, 477–482. DOI: 10.1111/j.1399-3054.1997.tb01026.x

Sreenivasulu, N., Ramanjulu, S., Ramachandra-Kini, K., Prakash, H.S., Shekar-Shetty, H., Savithri, H.S., Sudhakar, C. (1999). Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Sci., 141, 1–9. DOI: 10.1016/S0168-9452(98)00204-0

Sun, R.L., Zhou, Q.X., Sun, F.H., Jin, C.X. (2007). Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ. Exp. Bot., 60, 468–476. DOI: 10.1016/j.envexpbot.2007.01.004

Tamás, L., Dudíková, J., Ďurčeková, K., Halušková, L., Huttová, J., Mistrík, I., Ollé, M. (2008). Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. J. Plant Physiol., 165, 1193–1203. DOI: 10.1016/j.jplph.2007.08.013

Upchurch, R.G. (2008). Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 30, 967–977. DOI: 10.1007/s10529-008-9639-z

Velikova, V., Yordanov, I., Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci. 151, 59–66. DOI: 10.1016/Le Guédard, M., Faure, O., Bessoule, J.J. (2012). Soundness of in situ lipid biomarker analysis: Early effect of heavy metals on leaf fatty acid composition of Lactuca serriola. Environ. Exp. Bot., 76, 54–59. DOI: 10.1016/j.envexpbot.2011.10.009

Liu, X., Huang, B. (2004). Changes in Fatty Acid Composition and Saturation in Leaves and Roots of Creeping Bentgrass Exposed to High Soil Temperature. J. Am. Soc. Hortic. Sci., 129, 795–801.

Maiti, S., Ghosh, N., Mandal, C., Das, K., Dey, N., Adak, M.K. (2012). Responses of the maize plant to chromium stress with reference to antioxidation activity. Brazilian J. Plant Physiol. 24, 203–212. DOI: 10.1590/S1677-04202012000300007

Mithöfer, A., Schulze, B., Boland, W. (2004). Biotic and heavy metal stress response in plants: Evidence for common signals. FEBS Lett., 566, 1–5. DOI: 10.1016/j.febslet.2004.04.011

Moradkhani, S., Ali, R., Nejad, K., Dilmaghani, K. (2012). Effect of salicylic acid treatment on cadmium toxicity and leaf lipid composition in sunflower. J. Stress Physiol. Biochem., 8, 78–89.

Morsy, A.A., Salama, K.H.A., Kamel, H.A., Mansour, M.M.F. (2012). Effect of heavy metals on plasma membrane lipids and antioxidant enzymes of Zygophyllum species. Eurasian J. Biosci., 1–10. DOI: 10.5053/ejobios.2012.6.0.1

Mourato, M.P., Moreira, I.N., Leitão, I., Pinto, F.R., Sales, J.R., Martins, L.L. (2015). Effect of heavy metals in plants of the genus Brassica. Int. J. Mol. Sci., 16, 17975–17998. DOI: 10.3390/ijms160817975

Niu, L., Liao, W. (2016). Hydrogen Peroxide Signaling in Plant Development and Abiotic Responses: Crosstalk with Nitric Oxide and Calcium. Front Plant Sci., 7, 1–14. DOI: 10.3389/fpls.2016.00230

Niu, Y., Xiang, Y. (2018). An Overview of Biomembrane Functions in Plant Responses to High-Temperature Stress. Front Plant Sci., 9(915), 1–18. DOI: 10.3389/fpls.2018.00915

Pál, M., Horváth, E., Janda, T., Páldi, E., Szalai, G. (2005). Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays) plants. Physiol. Plant 125, 356–364. DOI: 10.1111/j.1399-3054.2005.00545.x

Park, W., Feng, Y., Kim, H., Suh, M.C., Ahn, S.J. (2015). Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress. Plant Cell. Rep. 34, 1489–1498. DOI: 10.1007/s00299-015-1801-1

Rabei, A., Hichami, A., Beldi, H., Bellenger, S., Khan, N.A., Soltani, N. (2018). Fatty acid composition, enzyme activities and metallothioneins in Donax trunculus (Mollusca, Bivalvia) from polluted and reference sites in the Gulf of Annaba (Algeria): Pattern of recovery during transplantation. Environ Pollut., 237, 900–907. DOI: 10.1016/j.envpol.2018.01.041

Rahayu, S.M., Suseno, S.H., Ibrahim, B. (2014). Proximate, latty acid profile and heavy metal content of selected by-catch fish species from Muara Angke, Indonesia. Pakistan J. Nutr., 13, 480–485.

Savchenko, T., Walley, J.W., Chehab, E.W., Xiao, Y., Kaspi, R., Pye, M.F., Mohamed, M.E., Lazarus, C.M., Bostock, R.M., Dehesh, K. (2010). Arachidonic Acid: An Evolutionarily Conserved Signaling Molecule Modulates Plant Stress Signaling Networks. Plant Cell, 22, 3193–3205. DOI: 10.1105/tpc.110.073858

Schat, H., Sharma, S.S., Vooijs, R. (1997). Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol. Plant, 101, 477–482. DOI: 10.1111/j.1399-3054.1997.tb01026.x

Sreenivasulu, N., Ramanjulu, S., Ramachandra-Kini, K., Prakash, H.S., Shekar-Shetty, H., Savithri, H.S., Sudhakar, C. (1999). Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Sci., 141, 1–9. DOI: 10.1016/S0168-9452(98)00204-0

Sun, R.L., Zhou, Q.X., Sun, F.H., Jin, C.X. (2007). Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ. Exp. Bot., 60, 468–476. DOI: 10.1016/j.envexpbot.2007.01.004

Tamás, L., Dudíková, J., Ďurčeková, K., Halušková, L., Huttová, J., Mistrík, I., Ollé, M. (2008). Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. J. Plant Physiol., 165, 1193–1203. DOI: 10.1016/j.jplph.2007.08.013

Upchurch, R.G. (2008). Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 30, 967–977. DOI: 10.1007/s10529-008-9639-z

Velikova, V., Yordanov, I., Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treat S0168-9452(99)00197-1

Verdoni, N., Mench, M., Cassagne, C., Bessoule, J.J. (2001). Fatty acid composition of tomato leaves as biomarkers of metal-contaminated soils. Environ. Toxicol. Chem. Ecotoxicol., 20, 382–388. DOI: 10.1897/1551-5028(2001)020

Verma, S., Dubey, R.S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci., 164, 645–655. DOI: 10.1016/S0168-9452(03)00022-0

Walley, J.W., Kliebenstein, D.J., Bostock, R.M., Dehesh, K. (2013). Fatty acids and early detection of pathogens. Curr. Opin. Plant Biol., 16, 520–526. DOI: 10.1016/j.pbi.2013.06.011

Zemanová, V., Pavlík, M., Pavlíková, D., Kyjaková, P. (2015). Changes in the contents of amino acids and the profile of fatty acids in response to cadmium contamination in spinach. Plant Soil Environ., 61, 285–290. DOI: 10.17221/274/2015-PSE

Download

Published
2020-06-29



Dursun Kisa 
Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey
Lokman Öztürk 
Department of Biology, Faculty of Science and Arts, Gaziosmanpaşa University, Tokat, Turkey
Necdettin Sağlam 
Department of Horticulture, Faculty of Agriculture, Gaziosmanpaşa University, Tokat, Turkey
Ömer Kayir 
Scientific, Technical, Research and Application Center, Hitit University, Çorum, Turkey
Mahfuz Elmastaş 
Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, University of Health Sciences, İstanbul, Turkey
Serhat Döker 
Çankırı Karatekin University, Faculty of Science, Department of Chemistry, 10100, Çankırı, Turkey



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.