Bud clusters of Spathiphyllum cultivars: a novel way to propagate peace lilies in vitro


A special organ formation appearing on the inflorescences of Spathiphyllum cultivars, which has not been described so far in the literature was studied in vivo and in vitro. Histological examination revealed that they are not callus, but bud-like formulas or dwarf shoots growing in groups, which contain highly differentiated tissues, have a shoot axis, meristematic regions, and leaf primordia. These bud clusters have been shown to be propagable in vitro on both solid and liquid media, for which benzyladenine and thidiazuron cytokinins may be recommended. The process of shoot regeneration from these bud clusters was also investigated, which can be accelerated by inhibitors of gibberellin biosynthesis. This study presents a propagation method which is based on organogenesis, thus providing high genetic stability, while incorporating the advantages of liquid culture, allowing the further development of a simplified large-scale bioreactor propagation system for Spathiphyllum species.


Spathiphyllum; anti-gibberellin; cytokinins; spadix inflorescence; liquid media culture; organogenesis

Ascough, G.D., Fennell, C.W. (2004). The regulation of plant growth and development in liquid culture. South Afr. J. Bot., 70(2), 181–190. https://doi.org/10.1016/S0254-6299(15)30234-9
Barbosa, N.C.S., Dornelas, M.C. (2020). The roles of gibberellins and cytokinins in plant phase transitions. Trop. Plant Biol., 14, 11–21. https://doi.org/10.1007/s12042-020-09272-1
Beytes, C., Hamrick, D. (2003). Ball redbook: crop production. Ball Publishing.
Chen, B. (2000). Studies on tissue culture and rapid propagation of Spathiphyllum “Xiangshui”. J. Fujian Coll. For., 20(3), 273–275.
Chen, J., Henny, R.J., McConnell, D.B. (2002). Development of new foliage plant cultivars. p. In: Trends in new crops and new uses, J. Janick, A. Whipkey (eds.). ASHS Press, Alexandria, VA, 466–472.
Chen, J.J., Henny, R.J. (2006). Somaclonal variation: an important source for cultivar development of floriculture crops. In: Floriculture, ornamental and plant biotechnology. Advances and topical issues, Teixeira da Silva, J.A. (ed.). Vol. 2. Global Science Books, UK, 244–253.
Chen, J., Henny, R.J., McConnell, D.B., Caldwell, R.D. (2003). Gibberellic acid affects growth and flowering of Philodendron ‘Black Cardinal.’ Plant Grow. Regul., 41(1), 1–6. https://doi.org/10.1023/A:1027326705060
Chugh, S., Guha, S., Rao, I. U. (2009). Micropropagation of orchids: a review on the potential of different explants. Scientia Hortic., 122(4), 507–520. https://doi.org/10.1016/j.scienta.2009.07.016
Dabski, M., Kozak, D. (1997). Wplyw 2iP i IAA na regeneracje pedow i korzeni Spathiphyllum cv. ‘Svend Neilson’ in vitro. Zesz. Probl. Post. Nauk Rol., 449, 43–48.
Das, A., Paul, A.K., Chaudhuri, S. (2000). Micropropagation of Spathiphyllum wallisii – an important ornamental plant. Hortic. J., 13(2), 71–75.
Dewir, Y.H., Chakrabarty, D., Hahn, E.J., Paek, K.Y. (2006). A simple method for mass propagation of Spathiphyllum cannifolium using an airlift bioreactor. In Vitro Cell. Dev. Biol. Plant, 42(3), 291–297. https://doi.org/10.1079/IVP2006764
Dewir, Y.H., Chakrabarty, D., Ali, M.B., Singh, N., Hahn, E.-J., Paek, K.-Y. (2007). Influence of GA3, sucrose and solid medium/bioreactor culture on in vitro flowering of Spathiphyllum and association of glutathione metabolism. Plant Cell, Tissue and Organ Culture, 90(3), 225–235. https://doi.org/10.1007/s11240-007-9212-9
Fan, S., Mao, F., Liu, B., Jian, D., Li, X., Zuo, X. (2019). Tissue culture and rapid propagation of Spathiphyllum kochii Engl, et Krause. Agric. Biotechnol., (2164-4993), 8(2), 86–89.
Fonnesbech, M., Fonnesbech, A. (1979). In vitro propagation of Spathiphyllum. Sci. Hortic., 10(1), 21–25. https://doi.org/10.1016/0304-4238(79)90065-7
García, L.R., Pérez, M., Torres, D. (2015). Efecto de 6-BAP en la multiplicación in vitro de Spathiphyllum wallisii Regel. Effect of 6-BAP on in vitro multiplication of Spathiphyllum wallisii Regel. Biotecnol. Veg., 15(1), 59–62.
George, E.F. (1993). Plant propagation by tissue culture. Part 1−2. Exegetics, Edington.
Griffith, L.P. (1998). Tropical foliage plants: a grower’s guide. Ball Pub., Batavia, Il.
Grzegorczyk-Karolak, I., Grąbkowska, R., Piątczak, E. (2021). Plant liquid cultures as a source of bioactive metabolites. In: Plant cell and tissue differentiation and secondary metabolites: fundamentals and applications, Ramawat, K.G., Ekiert, H.M., Goyal, S. (eds.). Springer, Cham., 743–771. https://doi.org/10.1007/978-3-030-30185-9_33
Han, B.H., Yae, B.W. (2001). In vitro propagation of Spathiphyllum floribundum cv. Cupid. Korean J. Plant Tissue Cult., 28(4), 209–213.
Henny, R.J., Norman, D.J., Kane, M.E. (1999). Gibberellic acid-induced flowering of Syngonium podophyllum Schott ‘White Butterfly’. HortScience, 34(4), 676–677. https://doi.org/10.21273/HORTSCI.34.4.676
Henny, R.J., Chen, J. (2010). Cultivar development of ornamental foliage plants. In: Plant breeding reviews, Janick, J. (ed.). John Wiley & Sons, Hobocken, NJ, 245–290.
Kacer, Y. A., Mazmanoglu, M., Mendi, Y.Y., Serce, S., Cetiner, S. (2005). The effect of cytokinin type and concentration on multiplication rate of Spathiphyllum (Fam. Araceae). Asian J. Plant Sci., 4(4), 401–404. https://doi.org/10.3923/ajps.2005.401.404
Kunisaki, J.T. (1977). Tissue culture of tropical ornamental plants. HortScience, 12, 141–142.
Liu, Y.-J., Mu, Y.-J., Zhu, Y.-G., Ding, H., Arens, N.C. (2007). Which ornamental plant species effectively remove benzene from indoor air? Atmos. Environ., 41(3), 650–654. https://doi.org/http://dx.doi.org/10.1016/j.atmosenv.2006.08.001
Özzambak, M.E., Zeybekoğlu, E., Gün, İ., Kiliç, T. (2018). Spathiphyllum’un in vitro mikro çoğaltımı üzerine şeker konsantrasyonlarının etkileri [Effects of sugar concentrations on in vitro micropropagation of Spathiphyllum]. Sakarya Univ. J. Sci., 22(3), 1015–1023. https://doi.org/10.16984/saufenbilder.348480
Paek, K.Y., Chakrabarty, D., Hahn, E.J. (2005). Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tiss. Org. Cult., 81(3), 287–300. https://doi.org/10.1007/s11240-004-6648-z
Paek, K.-Y., Hahn, E.-J., Son, S.-H. (2001). Application of bioreactors for large-scale micropropagation systems of plants. In Vitro Cell. Dev. Biol. Plant, 37(2), 149–157. https://doi.org/10.1007/s11627-001-0027-9
Ramirez-Malagon, R., Borodanenko, A., Barrera-Guerra, J.L., Ochoa-Alejo, N. (2001). Shoot number and shoot size as affected by growth regulators in in vitro cultures of Spathiphyllum floribundum L. Sci. Hortic., 89(3), 227–236. https://doi.org/10.1016/S0304-4238(00)00236-3
Ruzin, S.E. (1999). Plant microtechnique and microscopy. Oxford University Press, Oxford–New York.
Shannon, L.M., Kay, E., Lew, J.Y. (1966). Peroxidase isozymes from horseradish roots. I. Isolation and physical properties. J. Biol. Chem., 241(9), 2166–2172.
Soreanu, G., Dixon, M., Darlington, A. (2013). Botanical biofiltration of indoor gaseous pollutants – a mini-review. Chem. Engineer. J., 229, 585–594. https://doi.org/http://dx.doi.org/10.1016/j.cej.2013.06.074
Subbaraj, A.K., Funnell, K.A., Woolley, D.J. (2010). Dormancy and flowering are regulated by the reciprocal interaction between cytokinin and gibberellin in Zantedeschia. J. Plant Grow. Regul., 29(4), 487–499. https://doi.org/10.1007/s00344-010-9160-1
Van den Berg, E. (ed.). (2010). Spathiphyllum. Vakbl. Bloemist., 23a(65), 108.
Vardja, R., Vardja, T. (2001). The effect of cytokinin type and concentration and the number of subcultures on the multiplication rate of some decorative plants. Proc. Estonian Acad. Sci. Biol. Ecol., 50(1), 22–32.
Vargas, T.E., Garcia, E., de. (1997). In vitro propagation of write calla Spathiphyllum sp. Propagacion in vitro de Cala blanca Spathiphyllum sp. Agron. Trop., 47(2), 171–183.
Watad, A.A., Raghothama, K.G., Kochba, M., Nissim, A., Gaba, V. (1997). Micropropagation of Spathiphyllum and Syngonium is facilitated by use of interfacial membrane rafts. HortScience, 32(2), 307–308.
Werbrouck, S.P.O., Eeckhaut, T.G.R., Debergh, P.C. (2000). Induction and conversion of somatic embryogenesis on the anther filament of Spathiphyllum Schott. Acta Hort. (ISHS), 520, 263–270.
Werbrouck, S.P.O., Redig, P., Onckelen, H.A.V., Debergh, P.C. (1996). Gibberellins play a role in the interaction between imidazole fungicides and cytokinins in Araceae. J. Plant Grow. Regul., 15(2), 87–93. https://doi.org/10.1007/BF00192937
Werbrouck, S.P.O., Jeugt, B. van der, Dewitte, W., Prinsen, E., Onckelen, H.A.V., Debergh, P.C. (1995). The metabolism of benzyladenine in Spathiphyllum floribundum ‘Schott Petite’ in relation to acclimatisation problems. Plant Cell Rep., 14(10), 662–665. https://doi.org/10.1007/BF00232734
Wu, L.-J. (2001). A study on the tissue culture Spathiphyllum floribundum. J. Fujian Coll. For., 21(2), 169–172.
Yu, B., Liao, F., Liu, J., Sun, Y., Huang, L. (2016). Efficient regeneration and transformation of Spathiphyllum cannifolium. Plant Cell Tissue Organ Cult., 127(2), 325–334. https://doi.org/10.1007/s11240-016-1052-z
Zhao, J., Cui, J., Liu, J., Liao, F., Henny, R.J., Chen, J. (2012). Direct somatic embryogenesis from leaf and petiole explants of Spathiphyllum ‘Supreme’ and analysis of regenerants using flow cytometry. Plant Cell Tissue Organ Cult., 110(2), 239–249. https://doi.org/10.1007/s11240-012-0146-5

Published : 2022-04-29

Mosonyi, I., Tilly-Mándy, A., & Honfi, P. (2022). Bud clusters of Spathiphyllum cultivars: a novel way to propagate peace lilies in vitro. Acta Scientiarum Polonorum Hortorum Cultus, 21(2), 63-75. https://doi.org/10.24326/asphc.2022.2.6

István Dániel Mosonyi  mosonyi.istvan.daniel@szie.hu
Department of Floriculture and Dendrology, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, Budapest H-1118 Villányi str. 29-43, Hungary  Hungary
Andrea Tilly-Mándy 
Department of Floriculture and Dendrology, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, Budapest H-1118 Villányi str. 29-43, Hungary  Hungary
Péter Honfi 

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.