ACCUMULATION OF CADMIUM IN SELECTED SPECIES OF ORNAMENTAL PLANTS

Maciej Bosiacki

University of Life Sciences in Poznań



Abstract

In the spring-summer season in the years 2005 and 2006 (every year) three vegetation experiments were carried out with three species of ornamental plants: common sunflower (Helianthus annus ‘Pacino’), scarlet sage (Salvia splendens ‘Fuego’), tagetes erecta (Tagetes erecta ‘Inca Yellow’). These plants were planted in a substrate artificially contaminated by cadmium. Doses of cadmium applied in the experiment represent different degrees of contamination. The dose of 1 mg Cd · dm-3 indicates natural contents; 5 mg Cd · dm-3 – small contamination; 10 mg Cd · dm-3 – large contamination. The objective of the presented studies was the determination what quantities of cadmium pass from the substrate to the organs of the studied plants and which plant organs accumulate the greatest amounts of cadmium. Cadmium was mainly accumulated in leaves and shoots, then in inflorescences. While the least amount of this metal was found in the roots with the exception of Tagetes erecta where the greatest amount of cadmium was found in roots, then in leaves and shoots, while the lest amount was in inflorescences. The greatest cadmium contents were found in the roots of Tagetes erecta, in leaves and shoots of Salvia splendens, and in the inflorescences of Helianthus annus. Among the studied ornamental plant species, the plants of Tagetes erecta were characterized by the highest cadmium uptake.

Keywords:

cadmium, ornamental plants, Helianthus annus, Tagetes erecta, Salvia splendens, phytoremediation

Boyd R.S., Martens S.N., 1994. Nickel hyperaccumulated by Thlaspi montanum var. montanum is acutely toxic to an insect herbivore. Oikos 70, 21–25.
Buczek J., 1984. Effect of cadmium on chlorophyll content and dry mass yield in wheat and cucumber plants supplied either with nitrate or amonium. Acta Univ. Wratisl., 681, Prace bot., 31, 11–21.
Ciura J., Sękara A., Poniedziałek M., 2001. Fitoremediacjia – nowa metoda oczyszczania antropogenicznie zanieczyszczonych gleb. ZNAR. Kraków, 381, 83–93.
Kabata-Pendians A., Piotrowska M., Motowicka-Terelak T., Maliszewska-Kordybach B., Filipiak K., Kakowiak A., Pietruch Cz., 1995. Podstawy chemicznego zanieczyszczenia gleb. Metale ciężkie, siarka. WWA. Bibl. Monitoringu rod., Warszawa, 5–19.
Kabata-Pendias A., Pendias H., 1999. Biogeochemia pierwiastków śladowych. Wyd. II. PWN, Warszawa.
Klima S., 1992. Straty ekologiczne w rolnictwie wynikłe z degradacji gleb metalami. Mat. III Konf. Nauk. Tech. Ustronie-Jaszowiec. Ochrona Środowiska, 45–50.
Krupa Z., 1999. Wpływ kadmu na procesy fizjologiczne i metaboliczne roślin wyższych. Sympozjum Kadm w środowisku – problemy ekologiczne i metodyczne. Warszawa, 9.
Schonoor J.L., 2002. Phytoremediation of soil and groundwater. GWARTAC Technology Report TE-02-01 (March 2002).
Woźny A., Stroiński A., Gwóźdź E., 1990. Plant cell responses to cadmium. UAM, Poznań, 29.
Download

Published
2008-06-30



Maciej Bosiacki 
University of Life Sciences in Poznań



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)