In vitro multiplication of Mentha piperita L. and comparative evaluation of some biochemical compounds in plants regenerated by micropropagation and conventional method

Ana-Maria Radomir

National Research and Development Institute for Biotechnology in Horticulture Ștefănești-Argeș
https://orcid.org/0000-0001-7612-8930

Ramona Stan

National Research and Development Institute for Biotechnology in Horticulture Ștefănești-Argeș

Mariana Letiția Pandelea

National Research and Development Institute for Biotechnology in Horticulture Ștefănești-Argeș

Diana Elena Vizitiu

National Research and Development Institute for Biotechnology in Horticulture Ștefănești-Argeș
https://orcid.org/0000-0003-4286-7393


Abstract

The aim of this study was to elaborate an efficient in vitro multiplication protocol for Mentha piperita L. (peppermint) and to perform a comparative evaluation of some biochemical compounds in plants regenerated by micropropagation and conventional method. The use of a plain Murashige and Skoog (MS) basal medium favored the induction of regenerative processes, the percentage of explants that started to grow four weeks after inoculation being 92%. The highest multiplication rate (7.12 shoots/explant) and the highest average shoot length (8.11 cm) were obtained on the MS medium supplemented with 1 mg/L benzylaminopurine, when nodal fragments were used as explants. The rooting phase was not necessary, the shoots developing roots on the multiplication medium. The acclimatization rate of in vitro regenerated plants to ex vitro conditions was 96%. Although biochemical investigations revealed some differences between in vitro regenerated plants and those obtained by conventional methods, the results obtained show that micropropagation can be used successfully to obtain high-quality peppermint biological material, a potential source of bioactive compounds with therapeutic effect.

Keywords:

peppermint, tissue cultures, growth regulators, photosynthetic pigments, soluble carbohydrates, total polyphenols

Aliyu, A.B., Ibrahim, M.A., Ibrahim, H., Musa, A.M., Lawal, A.Y., Oshanimi, J.A., Usman, M., Abdulkadir, I.E., Oyewate, A.O., Amupitan, J.O. (2012). Free radical scavenging and total antioxidant capacity of methanol extract of Ethulia conyzoides growing in Nigeria. Rom. Biotech. Lett., 17, 7458–7465.

Fadel, D., Kintzios, S., Economou, S.A., Moschopoulou, G., Constantinidou, H.A. (2010). Effect of different strength of medium on organogenesis, phenolic accumulation and antioxidant activity of spearmint (Mentha spicata L.). Open Hortic. J., 3, 31–35. http://dx.doi.org/10.2174/1874840601003010031 DOI: https://doi.org/10.2174/1874840601003010031

George, E.F. (1993). Plant propagation by tissue culture. Part 1: the technology. The Edington Technology Exegetics Ltd., Westbury.

Ghanti, K., Kaviraj, C.P., Venugopal, R.B., Jabeen, F.T.Z., Rao, S. (2004). Rapid regeneration of Mentha piperita L. from shoot tip and nodal explants. Indian J. Biotechnol., 3, 594–598.

Hirata, T., Murakami, S., Ogihara, K., Suga, T. (1990). Volatile monoterpenoid constituents of the plantlets of Mentha spicata produced by shoot tip culture. Phytochemistry, 29(2), 493–495. https://doi.org/10.1016/0031-9422(90)85103-M DOI: https://doi.org/10.1016/0031-9422(90)85103-M

Holm, G. (1954). Chlorophyll mutations in barley. Acta Agr. Scand., 4(1), 457–471. https://doi.org/10.1080/00015125409439955 DOI: https://doi.org/10.1080/00015125409439955

Jeyakumar, M., Jayabalan, N. (2000). An efficient method for regeneration of plantlets from nodal explants of Psoralea corylifolia Linn. Plant Cell Biotech. Mol. Biol., 1(1–2), 37–40.

de Klerk, G.J., van der Krieken, W., de Jong, J.C. (1999). Reviewthe formation of adventitious roots: new concepts, new possibilities. In Vitro Cell. Dev. Biol. Plant, 35(3), 189–199. http://dx.doi.org/10.1007/s11627-999-0076-z DOI: https://doi.org/10.1007/s11627-999-0076-z

Kukreja, A.K., Dhawan, O.P., Mathur, A.K., Ahuja, P.S., Mandal, S. (1991). Screening and evaluation of agronomically useful somaclonal variations in Japanese mint (Mentha arvensis L.). Euphytica, 53, 183–191. https://doi.org/10.1007/BF00023270 DOI: https://doi.org/10.1007/BF00023270

Maity, S.K., Kundu, A.K., Tiwary, B.K. (2011). Rapid and large scale micropropagation of true to type clone of Mentha arvensis Linn. (Lamiaceae) – a valuable medicinal plant. Indian J. Appl. Pure Biol., 26(2), 193–198.

Manik, S.R., Yatoo, G.M., Ahmad, Z., Nathar, V.N. (2012). Direct organogenesis of Mentha piperita L. from shoot tip, nodal and sucker explants. J. Agric. Tech., 8(2), 663–669.

Matyssek, R., Agerer, R., Ernst, D., Munch, J.-C., Osswald, W., Pretzsch, H., Priesack, E., Schnyder, H., Treutter, D. (2005). The plant’s capacity in regulating resource demand. Plant Biol., 7(6), 560–580. https://doi.org/10.1055/s-2005-872981 DOI: https://doi.org/10.1055/s-2005-872981

Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant., 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nadaska, M., Erdelský, K., Čupka, P. (1990). Improving the Czechoslovakian Mentha piperita L. cv. Perpeta by in vitro micropropagation and stabilizing the component. Biologia (Bratislava), 45(11), 955–959.

Ozdemir, F.A. (2017). Effects of 6-benzylaminopurine and α-naphthalene acetic acid on micropropagation from ten days old cotyledon nodes of Mentha spicata subsp. Spicat. Romanian Biotech. Lett., 22(3), 12554–12559.

Pánczél, M., Eifert, J. (1960). Die Bestimung des Zuckerund Stärkegehaltes der Weinrebe mittels Anthronreagens. Mitt. Klosterneuburg, 10, 102–110.

Pati, P.K., Rath, S.P., Sharma, M., Sood, A., Ahuja, P.S. (2006). In vitro propagation of rose-a review. Biotechnol. Adv., 24(1), 94–114. http://dx.doi.org/10.1016/j.biotechadv.2005.07.001 DOI: https://doi.org/10.1016/j.biotechadv.2005.07.001

Phatak, S.V., Heble, M.R. (2002). Organogenesis and terpenoid synthesis in Mentha arvensis. Fitoterapia, 73(1), 32–39. https://doi.org/10.1016/S0367-326X(01)00347-1 DOI: https://doi.org/10.1016/S0367-326X(01)00347-1

Raja H.D., Arockiasamy, D. (2009). In vitro propagation of Mentha viridis L. from nodal and shoot tip explants. Plant Tiss. Cult. Biotech., 18(1), 1–6. https://doi. org/10.3329/ptcb.v18i1.3243 DOI: https://doi.org/10.3329/ptcb.v18i1.3243

Rajasekharan, P.E., Yadava, M.K., Shashidhara, S., Bhagyalakshmi, N. (2012). In vitro multiplication of Mentha piperata L. and estimation of secondary metabolites. IUP J. Genet. Evolution, 4(4), 39–43.

Santoro, M., Nievas, F., Zygadlo, J., Giordano, W., Banchio, E. (2013). Effects of growth regulators on biomass and the production of secondary metabolites in peppermint (Mentha piperita) micropropagated in vitro. Am. J. Plant Sci., 4(5), 49–55. http://dx.doi.org/10.4236/ajps.2013.45A008 DOI: https://doi.org/10.4236/ajps.2013.45A008

Sarwar, S., Zia, M., Rehman, R.U., Fatima, Z., Sial, R.A., Chaudhary, M.F. (2009). In vitro direct regeneration in mint from different explants on half strength MS medium. Afr. J. Biotech., 8(18), 4667–4671.

Senthil, K., Kamraj, M. (2012). Direct shoot regeneration from internodal explants of Mentha viridis L. Int. J. Pharm. Sci. Res., 3(4), 1101–1103. http://dx.doi.org/10.13040/IJPSR.0975-8232.3(4).1101-03 DOI: https://doi.org/10.13040/IJPSR.0975-8232.3(4).1101-03

Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16(3), 144–158.

Shelepova, O.V., Dilovarova, T.A., Gulevich, A.A., Olekhnovich, L.S., Shirokova, A.V., Ushakova, I.T., Zhuravleva, E.V., Konovalova, L.N., Baranova, E.N. (2021). Chemical components and biological activities of essential oils of Mentha × piperita L. from field-grown and field-acclimated after in vitro propagation plants. Agronomy, 11 (11), 2314. https://doi.org/10.3390/agronomy11112314 DOI: https://doi.org/10.3390/agronomy11112314

Sunandakumari, C., Martin, K.P., Chithra, M., Sini, S., Madhusoodanan, P.V. (2004). Rapid axillary bud proliferation and ex vitro rooting of herbal spice, Mentha piperita L. Indian J. Biotech., 3, 108–112.

Trevisan, S.C.C., Menezes, A.P.P., Barbalho, S.M., Guiguer, É.L. (2017). Properties of Mentha piperita: a brief review. World J. Pharm. Med. Res., 3(1), 309–313.

Vaidya, B.N., Asanakunov, B., Shahin, L., Jernigan, H.L., Joshee, N., Dhekney, S.A. (2019). Improving micropropagation of Mentha × piperita L. using a liquid culture system. In Vitro Cell. Dev. Biol. Plant, 55, 71–80. https://doi.org/10.1007/s11627-018-09952-4 DOI: https://doi.org/10.1007/s11627-018-09952-4

Varghese, T., Rema Shree, A.B., Nabeesa, E., Neelakandan, N., Nandakumar, S. (2003). In vitro propagation of Terminalia arjuna Roxb. multipurpose tree. Plant Cell Biotech. Mol. Biol., 4(1–2), 95–98.

Download

Published
2022-08-31



Ana-Maria Radomir 
National Research and Development Institute for Biotechnology in Horticulture Ștefănești-Argeș https://orcid.org/0000-0001-7612-8930
Ramona Stan 
National Research and Development Institute for Biotechnology in Horticulture Ștefănești-Argeș
Mariana Letiția Pandelea 
National Research and Development Institute for Biotechnology in Horticulture Ștefănești-Argeș
Diana Elena Vizitiu 
National Research and Development Institute for Biotechnology in Horticulture Ștefănești-Argeș https://orcid.org/0000-0003-4286-7393



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.