Bioactive compounds and antioxidant properties of black elderberry (Sambucus nigra L.)



Abstract

Abstract. Elderberry (Sambucus nigra L.) raw materials are a rich and valuable source of bioactive substances and popular herbal medicine. The research aimed to determine the content of polyphenolic compounds and pigments in leaves, flowers, and wild elderberry fruits and evaluate the antioxidant activity. The raw material was collected in various stages of development, dried in natural conditions and at a temperature of 45/60°C. The presence of polyphenolic compounds was demonstrated: phenolic acids, flavonoids, anthocyanins, and chlorophyll and carotenoids in all tested raw materials. The elderberry flower turned out to be the richest source of total polyphenols (10.04%) and phenolic acids (2.90%), leaf – flavonoids (1.48%), chlorophylls and carotenoids (931.7 and 133.77 mg . 100 g-1 DM, respectively), and the fruit – anthocyanins (0.29 g . 100 g-1 DM). Elderberry extracts were characterised by high antioxidant activity: Sambuci flos > Sambuci fructus > Sambuci folium. Fully ripe elderberry fruit dried at a temperature of 60°C contained finally less moisture and more flavonoids and chlorophyll than harvested at the beginning of ripening.


Keywords

medicinal plant, plant development phase, drying conditions, polyphenols, chlorophyll, carotenoids.

Alrumaihi, F., Almatroudi, A., Allemailem, K.S., Rahmani, A.H., Khan, A., Khan, M.A. (2020). Therapeutic effect of Bilsaan, Sambucus nigra stem exudate, on the OVA-induced allergica asthma in mice. Oxid. Med. Cell. Long., 3620192. https://doi.org/10.1155/2020/3620192
Bajer, T., Bajerová, P., Ventura, K. (2017). Effect of harvest and drying on composition of volatile profile of elderflowers (Sambucus nigra) from Wild. Nat. Prod. Comm., 12(12), 1937–1942.
Bartak, M., Lange, A., Słońska, A., Cymerys, J. (2020). Antiviral and healing potential of Sambucus nigra extracts. Rev. Bionatura, 5(3), 1264–1270.
Bratu, M., Doroftei, E., Negreanu-Pirjol, T., Hostina, C., Porta, S. (2012). Determination of antioxidant activity and toxicity of Sambucus nigra fruit extract using alternative methods. Food Technol. Biotechnol., 50(2), 177–182.
Csorba, V., Toth, M., Laszlo, A.M., Kardos, L., Kovacs, S. (2020). Cultivar and year effects on the chemical composition of elderberry (Sambucus nigra L.) fruits. Not. Bot. Horti. Agrobo., 48(2), 770–782. https://doi.org/10.15835/nbha48211873
Dawidowicz, A., Wianowska, D., Baraniak, B. (2006). The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). LWT – Food Sci. Technol. 39, 308–315. https://doi.org/10.1016/j.lwt.2005.01.005
Diviš, P., Pořízka, J., Vespalcová, M., Matějíček, A., Kaplan, J. (2015). Elemental composition of fruits from different black elder (Sambucus nigra L.) cultivars grown in the Czech Republic. J. Elem., 20 (3), 549–557. https://doi.org/10.5601/jelem.2015.20.1.758
Duymuş, H., Göger, F., Başer, C. (2014). In vitro antioxidant properties and anthocyanin compositions of elderberry extracts. Food Chem., 155, 112–119. https://doi.org/10.1016/j.foodchem.2014.01.028
Dżugan, M., Pizoń, A., Tomczyk, M., Kapusta, I. (2019). A new black elderberry dye enriched in antioxidants designed for healthy sweets production. Antioxidants, 8(8), 257. https://doi.org/10.3390/antiox8080257
El-Hawary, S.S., Fathy, F.I., EL Tantawy, M.E., El Kerdawy, A.M., Mansour, M.K., Meselhy, K.M. (2020). Phytochemical profile and cytotoxic activity of selected organs of Sambucus nigra L. via enzyme assay and molecular docking study. Egypt. J. Chem., 63(12), 4941–4949. https://doi.org/10.21608/EJCHEM.2020.31739.2674
Elvira-Torales, L.I., García-Alonso, J., Periago-Castón, M.J. (2019). Nutritional importance of carotenoids and their effect on liver health: a review. Antioxidants, 8, 229. https://doi.org/10.3390/antiox8070229
Farmakopea Polska V. (1999). PTF, Warszawa.
Farmakopea Polska IX. (2011). PTF, Warszawa.
Farmakopea Polska XI. (2017). PZWL, Warszawa.
Ferreira, S., Silva, P., Silva, A., Nunes, F. (2020). Effect of harvesting year and elderberry cultivar on the chemical composition and potential bioactivity: a three-year study. Food Chem., 302, 1253–1266. https://doi.org/10.1016/j.foodchem.2019.125366
Garcìa, L.M., Ceccanti, C., Negro, C., De Bellis, L., Incrocci, L., Pardossi, A., Guidi, L. (2021). Effect of drying methods on phenolic compounds and antioxidant activity of Urtica dioica L. leaves. Horticulturae, 7(1), 10. https://doi.org/10.3390/horticulturae7010010
Güzelmeriç, E., Çelik, C., Şen, N.B., Oçkun, M.A., Yeşilada, E. (2021). Quali/quantitative research on herbal supplements containing black elder (Sambucus nigra L.) fruits. J. Res. Pharm., 25(3), 238–248. https://doi.org/10.29228/jrp.14
Ho, G.T.T., Wangensteen, H., Barsett, H. (2017). Elderberry and elderflower extracts, phenolic compounds, and metabolites and their effect on complement, RAW264.7 macrophages and dendritic cells. Int. J. Mol. Sci., 18, 584. https://doi.org/10.3390/ijms18030584
Holm, G. (1954). Chlorophyll mutations in barley. Acta Agric. Scand., 4, 457–471. https://doi.org/10.1080/00015125409439955
Imenšek, N., Ivančič, A., Kraner Šumenjak, T., Islamčević Rasboršek, M., Kristl, J. (2021). The effect of maturation on chemical composition and harvest of fruits of diverse elderberry interspecific hybrids. Eur. J. Hortic. Sci. 86(3), 223–231. https://doi.org/10.17660/eJHS.2021/86.3.1
Jabłońska-Ryś, E., Zalewska-Korona, M., Kalbarczyk, J. (2009). Antioxidant capacity, ascorbic acid and phenolics content in wild edible fruits. J. Fruit Ornam. Plant Res., 17 (2), 115–120.
Kołodziej, B., Drożdżal, K. (2011). Właściwości przeciwutleniające kwiatów i owoców bzu czarnego pozyskiwanego ze stanu naturalnego. Żywn. Nauka Technol. Jakość, 4(77), 36–44.
Mahboubi, M. (2021). Sambucus nigra (black elder) as alternative treatment for cold and flu. Adv. Tradit. Med., 10, 1–10. https://doi.org/10.1007/s13596-020-00469-z
Marțiș (Petruț), G., Mureșan, V., Marc, R., Mureșan, C., Pop, C., Buzgău, G., Mureșan, A., Ungur, R., Muste, S. (2021). The physicochemical and antioxidant properties of Sambucus nigra L. and Sambucus nigra Haschberg during growth phases: from buds to ripening. Antioxidants, 10, 1093. https://doi.org/10.3390/antiox10071093
Miraj, S. (2016). Chemical composition and pharmacological effects of Sambucus nigra. Pharma Chem., 8(13), 231–234.
Młynarczyk, K., Walkowiak-Tomczak, D., Łysiak, G. (2018). Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. J. Funct. Foods, 40, 377–390. https://doi.org/10.1016/j.jff.2017.11.025
Mota, A.H., Duarte, N., Serra, A.T., Ferreira, A., Bronze, M.R., Custódio, L., Gaspar, M.M., Simões, S., Rijo, P., Ascensão, L., Faísca, P., Viana, A.S., Pinto, R., Kumar, P., Almeida, A.J., Reis, C.P. (2020). Further evidence of possible therapeutic uses of Sambucus nigra L. extracts by the assessment of the in vitro and in vivo anti-inflammatory properties of its PLGA and PCL-based nanoformulations. Pharmaceutics, 12, 1181. https://doi.org/10.3390/pharmaceutics12121181
Neekhra, S., Awasthi, H., Singh, D.C.P. (2021). Beneficial effects of Sambucus nigra in chronic stress-induced neurobehavioral and biochemical perturbation in rodents. Pharmacogn. J., 13(1). 155–161.
Palomino, O., García-Aguilar, A., González, A., Guillén, C., Benito, M., Goya, L. (2021). Biological actions and molecular mechanisms of Sambucus nigra L. in neurodegeneration: a cell culture approach. Molecules, 26, 4829. https://doi.org/10.3390/molecules26164829
Pareek, S., Sagar, N.A., Sharma, S., Kumar, V., Agarwal, T., González-Aguilar, G.A., Yahia, E.M. (2018). Chlorophylls: chemistry and biological functions. In: Fruit and vegetable phytochemicals: chemistry and human health, Yahia, E.M. (ed.). Vol. 1. 2nd ed. Wiley Blackwell, Chichester–Hobocken.
Pereira, D.I., Amparo, T.R., Almeida, T.C., Costa, F.S.F., Brandao, D.C., David, O., dos Santos, S., da Silva, G.N., de Souza, G.H.B. (2020). Cytotoxic activity of butanolic extract from Sambucus nigra L. flowers in natura and vehiculated in micelles in bladder cancer cells and fibroblasts. Nat. Prod. Res. https://doi.org/10.1080/14786419.2020.1851220
Petruț, G., Muste, S., Muresan, C., Paucean, A., Muresan, A., Nagy, M. (2017). Chemical profiles and antioxidant activity of black elder (Sambucus nigra L.) – a review. ‎J. Food Sci. Technol., 74 (1), 9–16.
Pliszka, B. (2020). Content and correlation of polyphenolic compounds, bioelements and antiradical activity in black elder berries (Sambucus nigra L.). J. Elem., 25(2), 595–605. https://doi.org/10.5601/jelem.2019.24.1.1829
Ran, H., Yanyan, L., Cui, W., Yanan, C. (2020). Phylogenetic and comparative analyses of complete chloroplast genomes of chinese Viburnum and Sambucus (Adoxaceae). Plants, 9(9), 1143. https://doi.org/10.3390/plants9091143
Saifullah, M., McCullum, R., McCluskey, A., Vuong, Q. (2019). Effects of different drying methods on extractable phenolic compounds and antioxidant properties from lemon myrtle dried leaves. Heliyon, 5, e03044. https://doi.org/10.1016/j.heliyon.2019.e03044
Schön, C., Mödinger, Y., Krüger, F., Doebis, C., Pischel, I., Bonnländer, B. (2021). A new high-quality elderberry plant extract exerts antiviral and immunomodulatory effects in vitro and ex vivo. Food Agric. Immun., 32(1), 650–662. https://doi.org/10.1080/09540105.2021.1978941
Sedláčková, V., Grygorieva, O., Fatrcová-Šramková, K., Vergun, O., Vinogradova, Y., Ivanišová, E., Brindza, J. (2018). The morphological and antioxidant characteristics of inflorescences within wild-growing genotypes of elderberry (Sambucus nigra L.). Potravin. Slovak J. Food Sci., 12(1), 444–453. https://doi.org/https://doi.org/10.5219/919
Simkin, A.J. (2021). Carotenoids and apocarotenoids in Planta: their role in plant development, contribution to the flavour and aroma of fruits and flowers, and their nutraceutical benefits. Plants, 10, 2321. https://doi.org/10.3390/plants10112321
Singleton, V., Rossi, J. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16, 144–158.
Stefaniak, A., Grzeszczuk, M. (2020). Effect of drying temperature and method of extract prearation on antioxidant activity of edible flowers of some oranamental plant species. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech., 354(53)1, 17–28. https://doi.org/10.21005/AAPZ2020.53.1.02
Shi, L., Kim, E., Yang, L., Huang, Y., Ren, N., Li, B., He, P., Tu, Y., Wu, Y. (2021). Effect of a combined microwave-assisted drying and air drying on improving active nutraceutical compounds, flavor quality, and antioxidant properties of Camellia sinensis L. (cv. Longjing 43) flowers. Food Quality and Safety, 5, 1–7. https://doi.org/10.1093/fqsafe/fyaa040
Thomas, A.L., Chen, Y.-C., Rottinghaus, G.E., Malone, A.M., Byers, P.L., Applequist, W.L., Finn, C.E. (2008). Occurrence of rutin and chlorogenic acid in elderberry leaf, flower, and stem in response to genotype, environment, and season. Acta Hort. 765, 197–206.
Torabian, G., Valtchev, P., Adil, Q., Dehghani, F. (2019). Anti-influenza activity of elderberry (Sambucus nigra). J. Funct. Foods, 54, 353–360. https://doi.org/10.1016/j.jff.2019.01.031
Viapiana, A., Wesołowski, M. (2017). The phenolic contents and antioxidant activities of infusions of Sambucus nigra L. Plant. Foods Hum. Nutr., 72, 82–87. https://doi.org/10.1007/s11130-016-0594-x
Wettstein, D. (1957). Chlorophyll-letale und der submikroskopische Formwechsel der Plastiden. Exp. Cell Res., 12, 427–434. https://doi.org/10.1016/0014-4827(57)90165-9
Yen, G., Chen, H. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem., 43, 27–32.
Youdim, M., Martin, A., Joseph, J. (2000). Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radic. Biol. Med., 29(1), 51–60.
Download

Published : 2022-04-29


Nurzyńska-Wierdak, R., Najda, A., Sałata, A., & Krajewska, A. (2022). Bioactive compounds and antioxidant properties of black elderberry (Sambucus nigra L.). Acta Scientiarum Polonorum Hortorum Cultus, 21(2), 143-156. Retrieved from https://czasopisma.up.lublin.pl/index.php/asphc/article/view/4548

Renata Nurzyńska-Wierdak 
University of Life Science in Lublin, Poland  Poland
https://orcid.org/0000-0002-9373-4841
Agnieszka Najda 
University of Life Science in Lublin, Poland  Poland
https://orcid.org/0000-0002-1185-8884
Andrzej Sałata  andrzej.salata@up.lublin.pl
University of Life Science in Lublin, Poland  Poland
https://orcid.org/0000-0002-8162-6587
Anna Krajewska 
University of Life Science in Lublin, Poland  Poland



Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.