Karrikins – effect on plants, interaction with other growth regulators, and potential use in horticulture

Przemysław Marciniak

Warsaw University of Life Sciences, Section of Ornamental Plants, Nowoursynowska 166, 02-787 Warsaw

Dariusz Sochacki

Warsaw University of Life Sciences, Section of Ornamental Plants, Nowoursynowska 166, 02-787 Warsaw, Poland

Karolina Nowakowska

Warsaw University of Life Sciences, Section of Ornamental Plants, Nowoursynowska 166, 02-787 Warsaw, Poland


Karrikins are a group of chemicals found in plant-derived smoke  from burning plant material. Till now, scientists concentrated on their effect on seed germination in plants sensitive to smoke. However, there are reports on the effect of karrikins on physiology and morphology in plants which do not occur in fire areas and are not naturally treated by smoke. These chemicals positively affect the biometric parameters of the in vitro cultured plants. Recently,  their effect on germination rate of pollen  in several species has been confirmed. They interact with plant growth regulators  enhancing their effects, for example using them together with auxins, cytokinins, gibberellins, abscisic acid or ethylene. This paper contains  a review of present research  on karrikins and proposes  perspectives of further investigations, as well as  application of these chemicals in horticultural production as a new group of plant growth regulators.


plant growth regulators, butenolid, karrikinolide, KAR1

Ahmad, A., Shahzadi, I., Mubeen, M., Yasin, N.A., Akram, W., Kan, W.U., Wu, T. (2021). Karrikinolide alleviates BDE-28, heat and Cd stressors in Brassica alboglabra by correlating and modulating biochemical attributes, antioxidative machinery and osmoregulators. Ecotoxicol. Environ. Saf., 213, 1–11. https://doi.org/10.1016/j.ecoenv.2021.112047 DOI: https://doi.org/10.1016/j.ecoenv.2021.112047

Akeel, A., Khan, M.M.A., Jaleel, H., Uddin, M. (2019). Smoke-saturated water and karrikinolide modulate germination, growth, photosynthesis and nutritional values of carrots (Daucus carota L.). J. Plant Growth Regul., 38, 1387–1401. https://doi.org/10.1007/s00344-019-09941-w DOI: https://doi.org/10.1007/s00344-019-09941-w

Alahakoon, A.A.C.B., Perera, G.A.D., Merritt, D.J., Turner, S.R., Gama-Arachchige, N.S. (2020). Species-specific smoke effects on seed germination of plants from different habitats from Sri Lanka. Flora, 263, 151530. https://doi.org/10.1016/j.Flora.2019.151530 DOI: https://doi.org/10.1016/j.flora.2019.151530

Antala, M. (2022). Physiological roles of karrikins in plants under abiotic stress conditions. In: Emerging plant growth regulators in agriculture. Roles in stress tolerance, Aftab, T., Naeem, M. (eds.). Academic Press, 193–204. https://doi.org/10.1016/B978-0-323-91005-7.00016-3 DOI: https://doi.org/10.1016/B978-0-323-91005-7.00016-3

Antala, M., Sytar, O., Rastogi, A., Brestic, M. (2020). Potential of karrikins as novel plant growth regulators in agriculture. Plants, 9(1), 43. https://doi.org/10.3390/plants9010043 DOI: https://doi.org/10.3390/plants9010043

Aremu, A.O., Plačková, L., Novák, O., Stirk, W.A., Doležal, K., van Staden, J. (2016). Cytokinin profiles in ex vitro acclimatized Eucomis autumnalis plants pre-treated with smoke-derived karrikinolide. Plant Cell Rep., 35(1), 227–238. https://doi.org/10.1007/s00299-015-1881-y DOI: https://doi.org/10.1007/s00299-015-1881-y

Banerjee, A., Tripathi, D.K., Roychoudhury, A. (2019). The karrikin ‘calisthenics’: Can compounds derived from smoke help in stress tolerance?. Physiol. Plant., 165(2), 290–302. https://doi.org/10.1111/ppl.12836 DOI: https://doi.org/10.1111/ppl.12836

Brown, N.A.C., van Standen, J. (1997). Smoke as a germination cue: a review. Plant Growth Reg., 22(2), 115–124. https://doi.org/10.1023/A:1005852018644 DOI: https://doi.org/10.1023/A:1005852018644

Bursch, K., Niemann, E.T., Nelson, D.C., Johansson, H. (2021). Karrikins control seedling photomorphogenesis and anthocyanin biosynthesis through a HY5-BBX transcriptional module. Plant J., 107, 1346–1362. https://doi.org/10.1111/tpj.15383 DOI: https://doi.org/10.1111/tpj.15383

Carbonnel, S., Das, D., Varshney, K., Kołodziej, M., Villaécijai, J.A., Gutjahr C. (2020). The karrikin signaling regulator SMAX1 controls Lotus japonicus root and root hair development by suppressing ethylene biosynthesis. PNAS, 117(35), 21757–21765. https://doi.org/10.1073/pnas.2006111117 DOI: https://doi.org/10.1073/pnas.2006111117

Carbonnel, S., Torabi, S., Gutjahr, C. (2021). MAX2-independent transcriptional responses to rac-GR24 in Lotus japonicus roots. Plant Signal. Behav., 16(1), 1840852. https://doi.org/10.1080/15592324.2020.1840852 DOI: https://doi.org/10.1080/15592324.2020.1840852

Chiwocha, S.D.S., Dixon, K.W., Flematti, G.R., Ghisalberti, E.L., Merritt, D.J., Nelson, D.C., Riseborough, J.M., Smith, S.M., Stevens, J.C. (2009). Karrikins: A new family plant growth regulators in smoke. Plant Sci., 177(4), 252–256. https://doi.org/10.1016/j.plantsci.2009.06.007 DOI: https://doi.org/10.1016/j.plantsci.2009.06.007

Cirillo, C., Rouphael, Y., Caputo, R., Raimondi, G., Sifola, M.I., De Pascale, S. (2016). Effects of high salinity and the exogenous application of an osmolyte on growth, photosythesis, and mineral composition in two ornamental shrubs. J. Hort. Sci. Biotechnol., 91(1), 14–22. https://doi.org/10.1080/14620316.2015.1110988 DOI: https://doi.org/10.1080/14620316.2015.1110988

Conn, C.E., Nelson, D.C. (2016). Evidence that KARRIKIN-INSENSITIVE2 (KAI2) receptors may perceive an unknown signal that is not karrikin or strigolactone. Front. Plant Sci., 6, 1219. https://doi.org/10.3389/fpls.2015.01219 DOI: https://doi.org/10.3389/fpls.2015.01219

Crisp, M.D., Burrows, G.E., Cook, L.G., Thornhill, A.H., Bowman, D.M. (2011). Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary. Nat. Commun., 2(1), 1–8. https://doi.org/10.1038/ncomms1191 DOI: https://doi.org/10.1038/ncomms1191

De Lange, J.H., Boucher, C. (1990). Autecological studies on Audouinia capitata (Bruniaceae). I. Plant-derived smoke as a seed germination cue. S. Afr. J. Bot., 56, 700–703. https://doi.org/10.1016/S0254-6299(16)31009-2 DOI: https://doi.org/10.1016/S0254-6299(16)31009-2

de Saint Germain, A., Ligerot, Y., Dun, E.A., Pillot, J.P., Ross, J.J., Beveridge, C.A., Rameau, C. (2013). Strigolactones stimulate internode elongation independently of gibberellins. Plant Physiol., 163(2), 1012–1025. https://doi.org/10.1104/pp.113.220541 DOI: https://doi.org/10.1104/pp.113.220541

Dixon, K.W., Merritt, D.J., Flematti, G.R., Ghisal-BertiE, L. (2009). Karrikinolide – A phytoreactive compound derived from smoke with applications in horticulture, ecological restoration and agriculture. Acta Hort., 813, 155–170. https://doi.org/10.17660/ActaHortic.2009.813.20 DOI: https://doi.org/10.17660/ActaHortic.2009.813.20

Feng, Z.T., Deng, Y.Q., Fan, H., Sun, Q.J., Sui, N., Wang, B.S. (2014). Effects of NaCl stress on the growth and photosynthetic characteristics of Ulmus pumila L. seedlings in sand culture. Photosynthetica, 52(2), 313–320. https://doi.org/10.1007/s11099-014-0032-y DOI: https://doi.org/10.1007/s11099-014-0032-y

Flematti, G.R., Dixon, K.W., Smith, S.M. (2015). What are karrikins and how were they ‘discovered’ by plants. BMC Biol., 13(1), 1–7. https://10.1186/s12915-015-0219-0 DOI: https://doi.org/10.1186/s12915-015-0219-0

Flematti, G.R., Ghisalberti, E.L., Dixon, K.W., Trengove, R.D. (2004). A compound from smoke that promotes seed germination. Science, 305(5686), 977. https://doi.org/10.1126/science.1099944 DOI: https://doi.org/10.1126/science.1099944

Flematti, G.R., Ghisalberti, E.L., Dixon, K.W., Trengove, R.D., Skelton, B.W., White, A.H. (2005). Structural analysis of a potent seed germination stimulant. Aust. J. Chem., 58(7), 505–506. https://doi.org/10.1071/CH05086 DOI: https://doi.org/10.1071/CH05086

Flematti, G.R., Ghisalberti, E.L., Dixon, K.W., Trengrove, R.D. (2009). Identification of alkyl substituted 2H-furo[2,3-c]pyran-2-ones as germination stimulants present in smoke. J. Agric Food Chem., 57(20), 9475–9480. https://doi.org/10.1021/jf9028128 DOI: https://doi.org/10.1021/jf9028128

Flematti, G.R., Goddard-Borger, E.D., Meritt, D.J., Gisalberti, E.I., Dixon, K.W., Trengove, R.D. (2007). Preparation of 2H-Furo[2,3-c]pyran-2-one derivatives and evaluation of their germination-promoting activity. J. Agric Food Chem., 55(6), 2189–2194. https://doi.org/10.1021/jf0633241 DOI: https://doi.org/10.1021/jf0633241

Ghebrehiwot, H.M., Kulkarni, M.G., Kirkman, K.P., van Staden J. (2008). Smoke-water and a smoke-isolated butenolide improve germination and seedling vigour of Eragrostis tef (Zucc.) trotter under high temperature and low osmotic potential. J. Agron. Crop. Sci., 194(4), 270–277. https://doi.org/10.1111/j.1439-037X.2008.00321.x DOI: https://doi.org/10.1111/j.1439-037X.2008.00321.x

Guercio, A.M., Boyer, F., Rameau, C., de Saint Germain, A., Shabek, N. (2021). Structural basis of KAI2 divergence in legume. bioRxiv 2021.01.06.425465. https://doi.org/10.1101/2021.01.06.425465 DOI: https://doi.org/10.1101/2021.01.06.425465

Guercio, A.M., Torabi, S., Cornu, D., Dalmais, M., Bendahmane, A., Le Signor, C., Pillot, J.P., Le Bris, P., Boyer, F.D., Rameau, C., Caroline Gutjahr, C., de Saint Germain, A., Shabek, N. (2022). Structural and functional analyses explain Pea KAI2 receptor diversity and reveal stereoselective catalysis during signal perception. Commun. Biol., 5, 126. https://doi.org/10.1038/s42003-022-03085-6 DOI: https://doi.org/10.1038/s42003-022-03085-6

Guo, Y.X., Zheng, Z.Y., La Clair, J.J., Chory, J., Noel J.P. (2013). Smoke-derived karrikin perception by the alpha/beta-hydrolase KAI2 from Arabidopsis. PNAS, 110(20), 8284–8289. https://doi.org/10.1073/pnas.1306265110 DOI: https://doi.org/10.1073/pnas.1306265110

Gutjahr, C., Gobbato, E., Choi, J., Riemann, M., Johnston, M.G., Summers, W., Carbonnel, S., Mansfield, C., Yang, S.Y., Nadal, M., Acosta, I., Takano, M., Jiao, W.B., Schneeberger, K., Kelly, K.A., Paszkowski, U. (2015). Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science, 18, 350(6267), 1521–1524. https://doi.org/10.1126/science.aac9715 DOI: https://doi.org/10.1126/science.aac9715

Hong, C., Wang, M., Yang, C. (2020). NADPH oxidase RbohD and ethylene signaling are involved in modulating seedling growth and survival under submergence stress. Plants, 9(4), 471. https://doi.org/10.3390/plants9040471 DOI: https://doi.org/10.3390/plants9040471

Hrdlička, J., Gucký, T., Novák, O., Kulkarni, M., Gupta, S., van Staden, J., Doležal, K. (2019). Quantifcation of karrikins in smoke water using ultra-high performance liquid chromatography–tandem mass spectrometry. Plant Methods, 15(1), 1–12.https://doi.org/10.1186/s13007-019-0467-z DOI: https://doi.org/10.1186/s13007-019-0467-z

Hrdlička, J., Gucký, T., van Staden, J., Novák, O., Doležal, K. (2021). A stable isotope dilution method for a highly accurate analysis of karrikins. Plant Methods, 17(1), 1–13. https://doi.org/10.1186/s13007-021-00738-1 DOI: https://doi.org/10.1186/s13007-021-00738-1

Hull, R., Choi, J., Paszkowski, U. (2021). Conditioning plant for arbuscular mycorrhizal symbiosis through DWARF14-LIKE signalling. Curr. Opin. Plant Biol., 62, 1–9. https://doi.org/10.1016/j.pbi.2021.102071 DOI: https://doi.org/10.1016/j.pbi.2021.102071

Isoda, R., Yoshinari, A., Ishikawa, Y., Sadoine, M., Simon, R., Frommer, W.B., Nakamura, M. (2021). Sensors for the quantification, localization and analysis of the dynamics of plant hormones. Plant J., 105(2), 542–557. https://doi.org/10.1111/tpj.15096 DOI: https://doi.org/10.1111/tpj.15096

Jain, N., van Staden, J. (2006). A smoke-derived butenolide improves early growth of Tomato seedlings. Plant Growth Regul., 50(2), 139–148. https://doi.org/10.1007/s10725-006-9110-x DOI: https://doi.org/10.1007/s10725-006-9110-x

Janas, K.M., Dzięgielewski, M., Szafrańska, K., Posmyk, M. (2010). Karrikiny – nowe regulatory kiełkowania nasion i wzrostu roślin [Karrikins – new regulators of seed germination and plant growth]. Kosmos, 59(3–4), 581–588 [in Polish].

Jibran, R., Hunter, D.A., Dijkwel, P.P. (2013). Hormonal regulation of leafsenescence through integration of developmental and stress signals. Plant Mol. Biol., 82(6), 547–561. https://doi.org/10.1007/s11103-013-0043-2 DOI: https://doi.org/10.1007/s11103-013-0043-2

Jogaiah, S., Govind, S.R., Tran, L.S. (2013). Systems biology-based approaches toward understanding drought tolerance in food crops. Crit. Rev. Biotechnol., 33(1), 23–39. https://doi.org/10.3109/07388551.2012.659174 DOI: https://doi.org/10.3109/07388551.2012.659174

Kapulnik, Y., Delaux, P.M., Resnick, N., Mayzlish-Gati, E., Wininger, S., Bhattacharya, C., Séjalon-Delmas, N., Combier, J.P., Bécard, G., Belausov, E., Beeckman, T., Dor, E., Hershenhorn, J., Koltai, H. (2011). Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 233(1), 209–216. https://10.1007/s00425-010-1310-y DOI: https://doi.org/10.1007/s00425-010-1310-y

Kępczyński, J. (2018). Induction of agricultural weed seed germination by smoke and smoke derived karrikin (KAR1), with a particular reference to Avena fatua L. Acta Physiol. Plant., 40(5), 1–10. https://doi.org/10.1007/s11738-018-2663-2 DOI: https://doi.org/10.1007/s11738-018-2663-2

Kępczyński, J. (2020). Progress in utilizing plant-derived smoke water and smoke-derived KAR1 in plant tissue culture. Plant Cell, Tissue Organ Cult., 140(2), 271–278. https://doi.org/10.1007/s11240-019-01739-8 DOI: https://doi.org/10.1007/s11240-019-01739-8

Khatoon, A., Rehman, S.U., Aslam, M.M., Jamil, M., Komatsu, S. (2020). Plant-derived smoke affects biochemical mechanism on plant growth and seed germination. Int. J. Mol. Sci., 21(20), 1–25. https://doi.org/10.3390/ijms21207760 DOI: https://doi.org/10.3390/ijms21207760

Kibria, M.G., Hoque, M.A. (2019). A review on plant responses to soil salinity and amelioration strategies. Open J. Soil Sci., 9(11), 219. https://doi.org/10.4236/ojss.2019.911013 DOI: https://doi.org/10.4236/ojss.2019.911013

Kim, J.M., To, T.K., Matsui, A., Tanoi, K., Kobayashi, N.I., Matsuda, F., Habu, Y., Ogawa, D., Sakamoto, T., Matsunaga, S., Bashir, K., Rasheed, S., Ando, M., Takeda, H., Kawaura, K., Kusano, M., Fukushima, A., Endo, T.A., Kuromori, T., Ishida, J., Morosawa, T., Tanaka, M., Torii, C., Takebayashi, Y., Sakakibara, H., Ogihara, Y., Saito, K., Shinozaki, K., Devoto, A., Seki, M. (2017). Acetate-mediated novel survival strategy against drought in plants. Nat. Plants, 3, 17097. https://doi.org/10.1038/nplants.2017.97 DOI: https://doi.org/10.1038/nplants.2017.97

Kulkarni, M.G., Ascough, G.D., van Staden, J. (2007). Effects of foliar applications of smoke-water and a smoke-isolated butenolide on seedling growth of Okra and Tomato. HortScience, 42(1), 179–182. https://doi.org/10.21273/HORTSCI.42.1.179 DOI: https://doi.org/10.21273/HORTSCI.42.1.179

Kulkarni, M.G., Ascough, G.D., Verschaeve, L., Baeten, K., Arruda, M.P., van Staden, J. (2010). Effect of smoke-water and a smoke-isolated butenolide on the growth and genotoxicity of commercial onion. Sci. Hortic., 124(4), 434–439. https://doi.org/10.1016/j.scienta.2010.02.005 DOI: https://doi.org/10.1016/j.scienta.2010.02.005

Kulkarni, M.G., Light, M.E., van Staden, J.(2011). Plant-derived smoke: old technology with possibilities for economic applications in agriculture and horticulture. S. Afr. J. Bot., 77(4), 972–979. https://doi.org/10.1016/j.sajb.2011.08.006 DOI: https://doi.org/10.1016/j.sajb.2011.08.006

Kumari, A., Papenfus, H.B., Kulkarni, M.G., Pošta, M., van Staden, J. (2014). Effect of smoke derivatives on in vitro pollen germination and pollen tube elongation of species from different plant families. Plant Biol., 17(4), 825–830. https://doi.org/10.1111/plb.12300 DOI: https://doi.org/10.1111/plb.12300

Li, W., Li, Q. (2017). Effect of environmental salt stress on plants and the molecular mechanism of salt stress tolerance. Int. J. Environ. Sci. Nat. Res, 7(3), 555714. https://doi.org/10.19080/IJESNR.2017.07.555714 DOI: https://doi.org/10.19080/IJESNR.2017.07.555714

Li, W., Nguyen, K.H., Chu, H.D., Ha, C.V., Watanabe, Y., Osakabe, Y., Leyva-González, M.A., Sato, M., Toyooka, K., Voges, L., Tanaka, M., Mostofa, M.G., Seki, M., Seo, M., Yamaguchi, S., Nelson, D.C., Herrera-Estrella, L., Tran, L.S. (2017). The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. PLoS Genetics, 13(11), e1007076. https://doi.org/10.1371/journal.pgen.1007076 DOI: https://doi.org/10.1371/journal.pgen.1007076

Li, W., Tran, L.S. (2015). Are karrikins involved in plant abiotic stress responses? Trends Plant Sci., 20(9), 535–538. https://doi.org/10.1016/j.tplants.2015.07.006 DOI: https://doi.org/10.1016/j.tplants.2015.07.006

Light, M.E., Daws, M.I., van Staden, J. (2009). Smoke-derived butenolide: towards understanding its biological effects. S. Afr. J. Bot., 75(1), 1–7. https://doi.org/10.1016/j.sajb.2008.10.004 DOI: https://doi.org/10.1016/j.sajb.2008.10.004

Light, M.E., van Staden, J. (2004). The potential of smoke in seed technology. S. Afr. J. Bot., 70(1), 97–101. DOI: 10.1016/S0254-6299(15)30311-2 DOI: https://doi.org/10.1016/S0254-6299(15)30311-2

Mathnoom, S.N., Al-Timmen, W.M.A. (2020). The effect of smoke water extract on endogenous phytohormones of Cucumis sativus L. seeds exposed to salt stress. Plant Cell Biotechnol. Mol. Biol., 21(63–64), 1–11.

Meng, Y., Chen, F., Shuai, H., Luo, X., Ding, J., Tang, S., Xu, S., Liu, J., Liu, W., Du, J., Liu, J., Yang, F., Sun, X., Yong, T., Wang, X., Feng, Y., Shu, K, Yang, W. (2016). Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions. Sci. Rep., 6(1), 1–12. https://doi.org/10.1038/srep22073 DOI: https://doi.org/10.1038/srep22073

Meng, Y., Shuai, H., Luo, X., Chen, F., Zhou, W., Yang, W., Shu, K. (2017). Karrikins: regulators involved in phytohormone signaling networks during seed germination and seedling development. Front. Plant Sci., 7, 1–9. https://doi.org/10.3389/fpls.2016.02021 DOI: https://doi.org/10.3389/fpls.2016.02021

Modi, A.T. (2002). Indigenous storage methods enhances seed vigour of traditional maize. S. Afr. J. Bot., 98(3), 138–139.

Monthony, A.S., Baethke, K., Erland, L.A.E., Murch, S.J. (2020). Tools for conservation of Balsamorhiza deltoidea and Balsamorhiza sagittata: Karrikin and thidiazuron-induced growth. Vitr Cell Dev Biol – Plant, 56(3), 398–406. https://doi.org/10.1007/s11627-019-10052-0 DOI: https://doi.org/10.1007/s11627-019-10052-0

Morffy, N., Faure, L., Nelson, D.C. (2016). Smoke and hormone mirrors: action and evolution of karrikin and strigolactone signaling. Trends Genet., 32(3), 176–188. https://doi.org/10.1016/j.tig.2016.01.002 DOI: https://doi.org/10.1016/j.tig.2016.01.002

MousaviNik, M., Jowkar, A., RahimianBoogar, A. (2016). Positive effects of karrikin on seed germination of three medicinal herbs under drought stress. Iran Agric. Res., 35(2), 57–64.

Nandal, M., Hooda, R. (2013). Salt tolerance and physiological response of plants to salinity: a review. Int. J. Sci. Eng. Res., 4(10), 44–67.

Nasir, F., Li, W., Tran, L.S.P., Tian, C. (2020). Does karrikin signaling shape the rhizomicrobiome via the strigolactone biosynthetic pathway? Trends Plant Sci., 25(12), 1184–1187, https://doi.org/10.1016/j.tplants.2020.08.005 DOI: https://doi.org/10.1016/j.tplants.2020.08.005

Nelson, D.C., Riseborough, J.A., Flematti, G.R., Stevens, J., Ghisalberti, E.L., Dixon, K.W., Smith, S.M. (2009). Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiol., 149(2), 863–873. https://doi.org/10.1104/pp.108.131516 DOI: https://doi.org/10.1104/pp.108.131516

Oláh, D., Molnár, Á., Soós, V., Kolbert, Z. (2021). Nitric oxide is associated with strigolactone and karrikin signal transduction in Arabidopsis roots. Plant Signal. Behav., 16(3), 1868148. https://doi.org/10.1080/15592324.2020.1868148 DOI: https://doi.org/10.1080/15592324.2020.1868148

Papenfus, H.B., Kumari, A., Kulkarni, M.G., Finnie, J.F., van Staden, J. (2013). Smoke-water enhances in vitro pollen germination and tube elongation of three species of Amaryllidaceae. S. Afr. J. Bot., 90, 87–92. https://doi.org/10.1016/j.sajb.2013.10.007 DOI: https://doi.org/10.1016/j.sajb.2013.10.007

Papenfus, H.B., Naidoo, D., Pošta, M., Finnie, J.F., van Staden, J. (2016). The effects of smoke derivatives on in vitro seed germination and development of the leopard orchid Ansellia africana. Plant Biol., 18(2), 289–294. https://doi.org/10.1111/plb.12374 DOI: https://doi.org/10.1111/plb.12374

Pošta, M., Light, M.E., Papenfus, H.B., van Staden, J., Kohout, L. (2013). Structure–activity relationships of analogs of 3,4,5-trimethylfuran-2(5H)-one with germination inhibitory activities. J. Plant Physiol., 170, 1235–1242. https://doi.org/10.1016/j.jplph.2013.04.002 DOI: https://doi.org/10.1016/j.jplph.2013.04.002

Ramaih, S., Guedira, M., Paulsen, G.M. (2003). Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat. Funct. Plant Biol., 30(9), 939–945. https://doi.org/10.1071/FP03113 DOI: https://doi.org/10.1071/FP03113

Rasmussen, A., Mason, M.G., De Cuyper, C., Brewer, P.B., Herold, S., Agusti, J., Geelen, D., Greb, T., Goormachtig, S., Beeckman, T., Beveridge, C.A. (2012). Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol., 158(4), 1976–1987. https://doi.org/10.1104/pp.111.187104 DOI: https://doi.org/10.1104/pp.111.187104

Rokich, D.P., Dixon, K.W., Sivasithamnparam, K., Meney, K.A. (2002). Smoke, mulch, and seed broadcasting effect on woodland resistorian in Western Australia. Restor. Ecol., 10(2), 185–194. https://doi.org/10.1046/j.1526-100X.2002.02040.x DOI: https://doi.org/10.1046/j.1526-100X.2002.02040.x

Ruzicka K., Ljung K., Vanneste S., Podhorská., R., Beeckman T., Friml J., Benková E. (2007). Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell, 19(7), 2197–2212. https://doi.org/10.1105/tpc.107.052126 DOI: https://doi.org/10.1105/tpc.107.052126

Sami, A., Riaz, M.W., Zhou, X., Zhu, Z., Zhou, K. (2019). Alleviating dormancy in Brassica oleracea seeds using NO and KAR1 with ethylene biosynthetic pathway, ROS and antioxidant enzymes modifications. BMC Plant Biol., 19(1), 577. https://doi.org/10.1186/s12870-019-2118-y DOI: https://doi.org/10.1186/s12870-019-2118-y

Sami, A., Zhu, Z.H., Zhu, T.X., Zhang, D.M., Xiao, L.H., Yu, Y., (2021). Zhou, K.J. Influence of KAR1 on the plant growth and development of dormant seeds by balancing different factors. Int. J. Environ. Sci. Technol., 1–10. https://doi.org/10.1007/s13762-021-03282-6 DOI: https://doi.org/10.1007/s13762-021-03282-6

Sardar, R., Ahmed, S., Yasin, N.A. (2021). Seed priming with karrikinolide improves growth and physiochemical features of Coriandrum sativum under cadmium stress. Environ. Advan., 5, 100082. https://doi.org/10.1016/j.envadv.2021.100082 DOI: https://doi.org/10.1016/j.envadv.2021.100082

Setayesh, R., Kafi, M., Nabati, J. (2017). Evaluation of drought stress thresholds in ornamental Berberis (Berberis thunbergii) shrub in Mashhad condition. J. Hortic. Sci., 30(4), 714–722. https://doi.org/10.22067/jhorts4.v0i0.52183

Shah, F.A., Ni, J., Tang, C., Chen, X., Kan, W., Wu, L. (2021a). Karrikinolide alleviates salt stress in wheat by regulating the redox and K+/Na+ homeostasis. Plant Physiol. Biochem., 167, 921–933. https://doi.org/10.1016/j.plaphy.2021.09.023 DOI: https://doi.org/10.1016/j.plaphy.2021.09.023

Shah, F.A., Ni, J., Yao, Y., Hu, H., Wei, R., Wu, L. (2021b). Overexpression of karrikins receptor gene Sapium sebiferum KAI2 promotes the cold stress tolerance via regulating the redox homeostasis in Arabidopsis thaliana. Fron. Plant Sci., 12, 1–16. https://doi.org/10.3389/fpls.2021.657960 DOI: https://doi.org/10.3389/fpls.2021.657960

Shah, F.A., Xiao, W., Wang, Q., Liu, W., Wang, D., Yao, Y., Hu, H., Chen, X., Huang, S., Hou, J., Lu, R., Liu, C., Ni, J., Wu, L. (2020). Karrikin improves osmotic and salt stress tolerance via the regulation of the redox homeostasis in the oil plant Sapium sebiferum. Fron. Plant Sci., 11, 1–14. https://doi.org/10.3389/fpls.2020.00216 DOI: https://doi.org/10.3389/fpls.2020.00216

Shakirova, F.M., Avalbaev, A.M., Bezrukova, M.V., Kudoyarova, G.R. (2010). Role of endogenous hormonal system in the realization of the antistress action of plant growth regulators on plants. Plant Stress, 4(1), 32–38.

Sharifi, P., Shirani Bidabadi, S. (2020). Protection against salinity stress in black cumin involves karrikin and calcium by improving gas exchange attributes, ascorbate–glutathione cycle and fatty acid compositions. SN Applied Sci., 2(12), 1–14. https://doi.org/10.1007/s42452-020-03843-3 DOI: https://doi.org/10.1007/s42452-020-03843-3

Smith, S.M., Li, J. (2014). Signalling and responses to strigolactones and karrikins. Curr. Opin. Plant Biol., 21, 23–29. https://doi.org/10.1016/j.pbi.2014.06.003 DOI: https://doi.org/10.1016/j.pbi.2014.06.003

van Staden, J., Jäger, A.K., Light, M.E., Burger, B.V. (2004). Isolation of the major germination cue from plant-derived smoke. S. Afr. J. Bot., 70, 654–659. https://doi.org/10.1016/S0254-6299(15)30206-4 DOI: https://doi.org/10.1016/S0254-6299(15)30206-4

van Staden, J., Soarg, S.G., Kulkarni, M.G., Light, M.E. (2005). Post-germination effects of the smoke-derived compound 3-methyl-2H-furo[2,3-c]pyran-2-one, and its potential as a preconditioning agent. Field. Crops Res., 98(2–3), 98–105. https://doi.org/10.1016/j.fcr.2005.12.007 DOI: https://doi.org/10.1016/j.fcr.2005.12.007

Stirnberg, P., Van de Sande, K., Leyser, O.H.M. (2002). MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Develop., 129, 1131–1141. https://doi.org/10.1242/dev.129.5.1131 DOI: https://doi.org/10.1242/dev.129.5.1131

Swarbreck, S.M. (2021.) Phytohormones interplay: karrikin signalling promotes ethylene synthesis to modulate roots. Trends Plant Sci., 26(4), 308–311. https://doi.org/10.1016/j.tplants.2021.02.004 DOI: https://doi.org/10.1016/j.tplants.2021.02.004

Swarbreck, S.M., Guerringue, Y., Matthus, E., Jamieson, F.J.C., Davies, J.M. (2019). Impairment in karrikin but not strigolactone sensing enhances root skewing in Arabidopsis thaliana. The Plant J., 98(4), 607–621. https://doi.org/10.1111/tpj.14233 DOI: https://doi.org/10.1111/tpj.14233

Thomas, T.H., van Staden, J. (1995). Dormancy break of celery (Apium graveolens L.) seeds by plant derived smoke extract. Plant Growth Regul., 17(3), 195–198. https://doi.org/10.1007/BF00024725 DOI: https://doi.org/10.1007/BF00024725

Toscano, S., Ferrante, A., Romano, D. (2019). Response of Mediterranean ornamental plants to drought stress. Horticulturae, 5(6), 1–20. https://doi.org/10.3390/horticulturae5010006 DOI: https://doi.org/10.3390/horticulturae5010006

Twidwell, D., Rogers, W.E., Fuhlendorf, S.D., Wonkka, C.L., Engle, D.M., Weir, J.R., Taylor Jr, C.A. (2013). The rising Great Plains fire campaign: citizens’ response to woody plant encroachment. Front. Ecol. Environ., 11(s1), e64–e71. https://doi.org/10.1890/130015 DOI: https://doi.org/10.1890/130015

Wang, L., Ko, E.E., Tran, J., Qiao, H. (2020a). TREE-EIN3-mediated transcriptional repression inhibits shoot growth in response to ethylene. Proc. Natl. Acad. Sci., 117(46), 29178–29189. https://doi.org/10.1073/pnas.2018735117 DOI: https://doi.org/10.1073/pnas.2018735117

Wang, R.H., Estelle, M. (2014). Diversity and specificity: Auxin perception and signaling through the TIR1/AFB pathway. Curr. Opin. Plant Biol., 21, 51–58. https://doi.org/10.1016/j.pbi.2014.06.006 DOI: https://doi.org/10.1016/j.pbi.2014.06.006

Wang, Y., Diao, P., Kong, L., Yu, R., Zhang, M., Zuo, T., Fan, Y., Niu, Y., Yan, F., Wuriyanghan, H. (2020b). Ethylene enhances seed germination and seedling growth under salinity by reducing oxidative stress and promoting chlorophyll content via ETR2 pathway. Front. Plant Sci., 11, 2174. https://doi.org/10.3389/fpls.2020.01066 DOI: https://doi.org/10.3389/fpls.2020.01066

Waters, M.T. (2017). From little things big things grow: karrikins and new directions in plant development. Funct. Plant Biol. 44(4), 373–385. https://doi.org/10.1071/FP16405 DOI: https://doi.org/10.1071/FP16405

Waters, M.T., Nelson, D.C., Scaffidi, A., Flematti, G.R., Sun, Y.K., Dixon, K.W., Smith, S.M. (2012). Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactiones in Arabidopsis. Development, 139, 1285–1295. https://doi.org/10.1242/dev.074567 DOI: https://doi.org/10.1242/dev.074567

Waters, M.T., Scaffidi, A., Flematii, G.R., Smith, S.M. (2013). The origins and mechanisms of karrikin signalling. Curr. Opin. Plant Biol., 16(5), 667–673. https://doi.org/10.1016/j.pbi.2013.07.005 DOI: https://doi.org/10.1016/j.pbi.2013.07.005

Waters, M.T., Scaffidi, A., Sun, Y.K., Flemmatti, G.R., Smith, S.M. (2014). The karrikin response system of Arabidopsis. Plant J., 79(4), 623–631. https://doi.org/10.1111/tpj.12430 DOI: https://doi.org/10.1111/tpj.12430

Yamada, Y., Furusawa, S., Nagasaka, S., Shimomura, K., Yamaguchi, S., Umehara, M. (2014). Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta, 240(2), 399–408. https://doi.org/10.1007/s00425-014-2096-0 DOI: https://doi.org/10.1007/s00425-014-2096-0

Yang, T., Lian, Y., Wang, C. (2019). Comparing and contrastin the multiple roles of butenolide plant growth regulators: strigolactones and karrikins in plant development adn adaptation to abiotic stress. Int. J. Mol. Sci., 20(24), 1–36. https://doi.org/10.3390/ijms20246270 DOI: https://doi.org/10.3390/ijms20246270

Zenkteler, M. (2007). Kultura zalążków, zalążni i zarodków [Culture of ovules, ovaries and embryos]. In: Biotechnologia roślin [Plant biotechnology], Malepszy, S., (eds.). PWN, Warszawa, 70–87.



Przemysław Marciniak 
Warsaw University of Life Sciences, Section of Ornamental Plants, Nowoursynowska 166, 02-787 Warsaw https://orcid.org/0000-0002-4641-4095
Dariusz Sochacki 
Warsaw University of Life Sciences, Section of Ornamental Plants, Nowoursynowska 166, 02-787 Warsaw, Poland https://orcid.org/0000-0002-9202-1356
Karolina Nowakowska 
Warsaw University of Life Sciences, Section of Ornamental Plants, Nowoursynowska 166, 02-787 Warsaw, Poland https://orcid.org/0000-0003-0584-7895


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.


Most read articles by the same author(s)